Boron neutron capture therapy (BNCT) for the treatment of unresectable, locally advanced, and recurrent carcinoma of the head and neck cancer has been approved by the Japanese government for reimbursement under the national health insurance as of June 2020. A new treatment planning system for clinical BNCT has been developed by Sumitomo Heavy Industries, Ltd. (Sumitomo), NeuCure® Dose Engine To safely implement this system for clinical use, the simulated neutron flux and gamma ray dose rate inside a water phantom was compared against experimental measurements. Furthermore, to validate and verify the new planning system, the dose distribution inside an anthropomorphic head phantom was compared against a BNCT treatment planning system SERA and an in-house developed Monte Carlo dose calculation program. The simulated results closely matched the experimental results, within 5% for the thermal neutron flux and 10% for the gamma ray dose rate. The dose distribution inside the head phantom closely matched with SERA and the in-house developed dose calculation program, within 3% for the tumour and a difference of 0.3 Gy for the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709965 | PMC |
http://dx.doi.org/10.1186/s13014-021-01968-2 | DOI Listing |
JMIR Res Protoc
January 2025
School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Burwood, Australia.
Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.
View Article and Find Full Text PDFJ Particip Med
January 2025
Department of Ambulatory Care, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland.
Background: Health authorities worldwide have invested in digital technologies to establish robust information exchange systems for improving the safety and efficiency of medication management. Nevertheless, inaccurate medication lists and information gaps are common, particularly during care transitions, leading to avoidable harm, inefficiencies, and increased costs. Besides fragmented health care processes, the inconsistent incorporation of patient-driven changes contributes to these problems.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America.
Purpose: This study aims to explore the feasibility and performance of three-dimensional ultrasound (3DUS) imaging in ophthalmology using commercially available ultrasound probes adapted to a slit lamp.
Significance: Despite ultrasound's long-standing application in eye care for visualizing ocular components, the evolution of 3DUS technology has remained inactive, with limited development and commercial availability. This study introduces a novel method that could potentially enhance ophthalmic diagnostics and treatment planning by providing comprehensive 3D views of ocular structures using existing ultrasound probes adapted to the conventional slit lamp.
Objective: Aim: The goal of this work is to investigate the effectiveness of state regulatory tools influencing the HCS reform process and the institutional support for the implementation of SGPMS at the primary level.
Patients And Methods: Materials and Methods: To evaluate the effectiveness of SGPMS implementation at the primary level, methods of observation, analysis and synthesis, grouping, and generalization were applied.
Results: Results: In the implementation of SGPMS, PMC is prioritized.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!