Microstructure and granulation cycle mechanisms of anammox-HAP coupled granule in the anammox EGSB reactor.

Water Res

Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan. Electronic address:

Published: February 2022

The formation of anammox-hydroxyapatite (HAP) coupled granules has been shown to be an approach to efficient nitrogen removal and phosphorus recovery in the anammox EGSB reactor. However, the granulation cycle mechanism of anammox-HAP coupled granules for sustainable regeneration and growth is still not well understood. In this study, the microstructure, chemical composition and microbial structure of a total of six different-sized granules, from 0.25 mm to 2.8 mm, was determined. An SEM-EDS analysis indicated that the small granules (<0.5 mm) were composed of poly-pellet clusters with anammox biofilms attached to the HAP cores, and the large granules (>0.5 mm) consisted of a three-layer structure: a surface anammox biofilm layer, a middle connection layer, and a HAP mineral inner core. The analysis of elemental composition and microbial structure suggested homogenous granular characteristics regardless of granule size. The dominant microorganisms were anammox bacteria of Candidatus Kuenenia stuttgartiensis and heterotrophic denitrifying bacteria. Based on these results, a granulation cycle mechanism for anammox-HAP coupled granules was proposed for the first time. The growth of the small granules with the simultaneous enlargement of anammox biofilms and HAP cores results in the formation of large granules. Large granules regenerate new small granules in a two-step procedure. The first step is the separation of embryo HAP crystals from the mother core via heterogeneous growth, and the second step is the separation of the biofilms due to biodegradation and shear stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117968DOI Listing

Publication Analysis

Top Keywords

granulation cycle
12
anammox-hap coupled
12
coupled granules
12
small granules
12
granules
9
anammox egsb
8
egsb reactor
8
cycle mechanism
8
mechanism anammox-hap
8
composition microbial
8

Similar Publications

Objective: The direction of this study was to detect and analyze the specific mechanism of anti-apoptosis in mesenchymal stem cells (MSCs) cells caused by high expression of BCL2.

Methods: Bioinformatics was completed in Link omics. GO analysis and KEGG analysis were carried out, and the grope tool of Link omics database was used to evaluate PPI information and other core path analysis information.

View Article and Find Full Text PDF

Scalable nanoplastic degradation in water with enzyme-functionalized porous hydrogels.

J Hazard Mater

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China. Electronic address:

The prevalence of nanoplastics in water has led to significant environmental and health concerns, yet effective and scalable strategies for mitigating this contamination remain limited. Here, we report a straightforward, efficient, and scalable approach to degrade nanoplastics in water using enzyme-loaded hydrogel granules with an interconnected porous structure and adjustable properties. These porous hydrogels were synthesized via a polymerization-induced phase separation method, allowing easy scaling-up.

View Article and Find Full Text PDF

Effects of Shenqi Xiangyi granules in advanced gastric cancer chemotherapy.

World J Gastrointest Oncol

January 2025

Department of Oncology, Zhangjiagang First People's Hospital, Suzhou 215600, Jiangsu Province, China.

Background: Owing to the absence of specific symptoms in early-stage gastric cancer, most patients are diagnosed at intermediate or advanced stages. As a result, treatment often shifts from surgery to other therapies, with chemotherapy and targeted therapies being the primary options for advanced gastric cancer treatment.

Aim: To investigate both treatment efficacy and immune modulation.

View Article and Find Full Text PDF

Stress Granule Induction in Rat Retinas Damaged by Constant LED Light.

Invest Ophthalmol Vis Sci

January 2025

Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.

Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.

View Article and Find Full Text PDF

[Molecular authentication of calcined oyster (Ostrea gigas) and its processed products].

Zhongguo Zhong Yao Za Zhi

December 2024

Experimental Research Center, China Academy of Chinese Medical Sciences Beijing 100700, China.

Calcined oyster is a commonly used shellfish traditional Chinese medicine in clinical practice in China. During the processing of oysters, their microscopic characteristics are destroyed, and open-fire calcination can damage the DNA of oysters, making it difficult to identify the primary source. The establishment of a specific polymerase chain reaction(PCR) method for the identification of calcined oysters can provide a guarantee for the safety and clinical efficacy of the medicine and its processed products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!