As one of three top-priority eutrophic lakes in China, Dianchi Lake has received national attention due to its severe eutrophication in recent decades. Meteorological factors are the main factors driving the formation and persistence of algae blooms. In addition, meteorological variation-induced algal blooms usually have a hysteresis effect. However, there have been few quantitative studies on this hysteresis effect. In the present study, Landsat images were used to extract the dynamic characteristics of changes in algal blooms in Dianchi Lake from 1988 to 2020. The hysteresis effect of meteorological factors driving algal blooms was studied by employing the modified lag-correlation method. The results showed that the algal blooms in Dianchi Lake were most severe between 1998 and 2008. During the periods of algal blooms, the values of air temperature (AT) and precipitation (PP) were significantly higher, while those wind velocity (WV) and sunshine duration (SSD) were obviously lower, than the corresponding annual mean values. AT and PP were significantly positively correlated with algal bloom factors in both the formation and persistence stages of algal blooms, while SSD and WV both promoted their regression, but these effects were less significant in the persistence period than in the formation period. Moreover, rainfall led to a decrease in SSD and WV, indirectly contributing to algal blooms. Furthermore, AT, PP and SSD are the main factors impacting the duration of persistent blooms. The time periods during which each meteorological factor was most influential were as follows: 1) AT - 25-30 days before the maximum bloom. 2) PP - within the first 10 days before the maximum bloom. 3) Both SSD and WV - 15-20 days before the maximum bloom. The results of this study support the prediction of algal blooms in Dianchi Lake.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.152558DOI Listing

Publication Analysis

Top Keywords

algal blooms
36
dianchi lake
20
blooms dianchi
12
maximum bloom
12
blooms
11
algal
10
meteorological variation-induced
8
variation-induced algal
8
meteorological factors
8
main factors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!