Optical waveguide amplifiers are essential to improve the performance of integrated communication systems. Previous research has mainly focused on C- and L-bands amplification, but there are few reports on S-band waveguide amplifiers. Here, we introduce a polymer-based waveguide amplifier that uses a NaYF:Yb,Tm nanoparticles-PMMA nanocomposite as gain medium, which can provide loss compensation in the S-band. To obtain the strongest emission luminescence at 1480 nm, we optimized the doping concentration of Yb and Tm to 20% and 1%, respectively. By copolymerizing the nanoparticles and methyl methacrylate monomers, the nanocomposite was synthesized and used as the gain medium to fabricate S-band waveguide amplifiers. A relative gain of 5.6 dB/cm was observed at 1480 nm under the excitation of a 980-nm pump laser. To the best of our knowledge, this is the first time that S-band amplification has been observed in a polymer-based waveguide amplifier. This result is expected to extend the waveband of polymer-based waveguide amplifiers to the S-band.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.441662DOI Listing

Publication Analysis

Top Keywords

waveguide amplifiers
16
s-band waveguide
12
waveguide amplifier
12
gain medium
12
polymer-based waveguide
12
nanocomposite gain
8
waveguide
7
s-band
5
polymer-based
4
polymer-based s-band
4

Similar Publications

Distributed feedback lasers, which feature rapid wavelength tunability, are not presently available in the yellow and orange spectral regions, impeding spectroscopic studies of short-lived species that absorb light in this range. To meet this need, a rapidly tunable laser system was constructed, characterized, and demonstrated for measurements of the NH radical at 597.4 nm.

View Article and Find Full Text PDF

We demonstrate a hybrid integrated optical frequency comb amplifier composed of a silicon carbide microcomb and a lithium niobate waveguide amplifier, which generates a 10-dB on-chip gain for the C+L band microcombs under 1480-nm laser pumping and an 8-dB gain under 980-nm laser pumping. It will solve the problem of low output power of microcombs and can be applied in various scenarios such as optical communication, lidar, optical computing, astronomical detection, atomic clocks, and more.

View Article and Find Full Text PDF
Article Synopsis
  • A fiber Bragg grating (FBG) demodulation system using arrayed waveguide gratings (AWGs) has been developed, integrating key components like photodiode arrays and transimpedance amplifiers.
  • The system features eight output channels, with signals processed for high-speed transmission via Ethernet, resulting in a compact design measuring 200 × 100 × 60 mm.
  • Experimental results indicate the system achieves a wavelength demodulation accuracy of 4.24 pm and can handle demodulation rates exceeding 200 kHz, making it suitable for high-frequency vibration sensing applications.
View Article and Find Full Text PDF
Article Synopsis
  • Photonic-integrated circuits using erbium-doped thin film lithium niobate on insulator are gaining interest for their potential in waveguide amplifiers and microlasers.
  • A low-loss wavelength division multiplexer (WDM) was developed, operating at the relevant wavelengths for erbium ions (∼1480 nm for pumping and 1530-1560 nm for emission) with insertion losses below 0.7 dB and over a bandwidth of more than 20 nm.
  • The study also includes visualizing the multimode interference pattern and demonstrates that the device's spectral characteristics can be adjusted through design changes.
View Article and Find Full Text PDF

In this paper, we report the use of femtosecond radially polarized vortex laser with MHz repetition rate for direct writing of cladding waveguides (WGs) and realization of waveguide laser oscillations in ytterbium-doped calcium fluoride crystal. The negative refractive index modification in Yb:CaF crystal is fabricated by the homemade all-fiber laser amplifier. At 976 nm pump wavelength, these Yb:CaF WGs can achieve continuous-wave (CW) laser oscillation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!