Nuclei segmentation is an essential step in DNA ploidy analysis by image-based cytometry (DNA-ICM) which is widely used in cytopathology and allows an objective measurement of DNA content (ploidy). The routine fully supervised learning-based method requires often tedious and expensive pixel-wise labels. In this paper, we propose a novel weakly supervised nuclei segmentation framework which exploits only sparsely annotated bounding boxes, without any segmentation labels. The key is to integrate the traditional image segmentation and self-training into fully supervised instance segmentation. We first leverage the traditional segmentation to generate coarse masks for each box-annotated nucleus to supervise the training of a teacher model, which is then responsible for both the refinement of these coarse masks and pseudo labels generation of unlabeled nuclei. These pseudo labels and refined masks along with the original manually annotated bounding boxes jointly supervise the training of student model. Both teacher and student share the same architecture and especially the student is initialized by the teacher. We have extensively evaluated our method with both our DNA-ICM dataset and public cytopathological dataset. Without bells and whistles, our method outperforms all existing weakly supervised entries on both datasets. Code and our DNA-ICM dataset are publicly available at https://github.com/CVIU-CSU/Weakly-Supervised-Nuclei-Segmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2021.3138189DOI Listing

Publication Analysis

Top Keywords

weakly supervised
12
nuclei segmentation
12
annotated bounding
12
bounding boxes
12
sparsely annotated
8
fully supervised
8
coarse masks
8
supervise training
8
pseudo labels
8
dna-icm dataset
8

Similar Publications

Background: Traditional liver fibrosis staging via percutaneous biopsy suffers from sampling bias and variable inter-pathologist agreement, highlighting the need for more objective techniques. Deep learning models for disease staging from medical images have shown potential to decrease diagnostic variability, with recent weakly supervised learning strategies showing promising results even with limited manual annotation.

Purpose: To study the clustering-constrained attention multiple instance learning (CLAM) approach for staging liver fibrosis on trichrome whole slide images (WSIs) of children and young adults.

View Article and Find Full Text PDF

Objective: Breast cancer stands as the most prevalent form of cancer among women globally. This heterogeneous disease exhibits varying clinical behaviors. The stratification of breast cancer patients into risk groups, determined by their metastasis and survival outcomes, is pivotal for tailoring personalized treatments and therapeutic interventions.

View Article and Find Full Text PDF

ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.

J Biomed Inform

January 2025

Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:

Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.

View Article and Find Full Text PDF

Instance segmentation of surgical instruments is a long-standing research problem, crucial for the development of many applications for computer-assisted surgery. This problem is commonly tackled via fully-supervised training of deep learning models, requiring expensive pixel-level annotations to train. In this work, we develop a framework for instance segmentation not relying on spatial annotations for training.

View Article and Find Full Text PDF

Background: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data.

Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!