Covalently Cross-Linked Pig Gastric Mucin Hydrogels Prepared by Radical-Based Chain-Growth and Thiol-ene Mechanisms.

Macromol Biosci

Department for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, Würzburg, D-97070, Germany.

Published: April 2022

Mucin, a high molecular mass hydrophilic glycoprotein, is the main component of mucus that coats every wet epithelium in animals. It is thus intrinsically biocompatible, and with its protein backbone and the o-glycosidic bound oligosaccharides, it contains a plethora of functional groups which can be used for further chemical modifications. Here, chain-growth and step-growth (thiol-ene) free-radical cross-linked hydrogels prepared from commercially available pig gastric mucin (PGM) are introduced and compared as cost-efficient and easily accessible alternative to the more broadly applied bovine submaxillary gland mucin. For this, PGM is functionalized with photoreactive acrylate groups or allyl ether moieties, respectively. Whereas homopolymerization of acrylate-functionalized polymers is performed, for thiol-ene cross-linking, the allyl-ether-functionalized PGM is cross-linked with thiol-functionalized hyaluronic acid. Morphology, mechanical properties, and cell compatibility of both kinds of PGM hydrogels are characterized and compared. Furthermore, the biocompatibility of these hydrogels can be evaluated in cell culture experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202100274DOI Listing

Publication Analysis

Top Keywords

pig gastric
8
gastric mucin
8
hydrogels prepared
8
mucin pgm
8
covalently cross-linked
4
cross-linked pig
4
mucin
4
hydrogels
4
mucin hydrogels
4
prepared radical-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!