Many animals are dependent on microbial partners that provide essential nutrients lacking from their diet. Ticks, whose diet consists exclusively on vertebrate blood, rely on maternally inherited bacterial symbionts to supply B vitamins. While previously studied tick species consistently harbor a single lineage of those nutritional symbionts, we evidence here that the invasive tick harbors a unique dual-partner nutritional system between an ancestral symbiont, , and a more recently acquired symbiont, . Using metagenomics, we show that exhibits extensive genome erosion that endangers the nutritional symbiotic interactions. Its genome includes folate and riboflavin biosynthesis pathways but deprived functional biotin biosynthesis on account of massive pseudogenization. Co-symbiosis compensates this deficiency since the genome encompasses an intact biotin operon, which was primarily acquired via lateral gene transfer from unrelated intracellular bacteria commonly infecting arthropods. Thus, in , a mosaic of co-evolved symbionts incorporating gene combinations of distant phylogenetic origins emerged to prevent the collapse of an ancestral nutritional symbiosis. Such dual endosymbiosis was never reported in other blood feeders but was recently documented in agricultural pests feeding on plant sap, suggesting that it may be a key mechanism for advanced adaptation of arthropods to specialized diets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709577PMC
http://dx.doi.org/10.7554/eLife.72747DOI Listing

Publication Analysis

Top Keywords

dual endosymbiosis
8
invasive tick
8
nutritional
5
endosymbiosis supports
4
supports nutritional
4
nutritional adaptation
4
adaptation hematophagy
4
hematophagy invasive
4
tick animals
4
animals dependent
4

Similar Publications

Cell wall components of gut commensal bacteria stimulate peritrophic matrix formation in malaria vector mosquitoes through activation of the IMD pathway.

PLoS Biol

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.

View Article and Find Full Text PDF

Legume plants can interact with nitrogen-fixing rhizobia bacteria and arbuscular mycorrhizal fungi (AMF) simultaneously, forming a tripartite symbiotic association. Co-inoculation studies performed on a variety of legumes have shown that rhizobia and AMF influence each other when they co-occur in tripartite association and affect host plant nutrition and performance. Although single plant-microbe interactions have been extensively studied, our understanding in the field of tripartite interactions is insufficient and current knowledge cannot predict the symbiotic outcome, which appears to depend on many parameters.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungus and Pseudomonas bacteria affect tomato response to Tuta absoluta (Lepidoptera: Gelechiidae) herbivory.

BMC Plant Biol

December 2024

State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.

Tuta absoluta (Lepidoptera: Gelechiidae) is one of the most significant invasive and destructive pests worldwide, causing serious economic losses to the tomato industry. Rhizosphere microorganism, such as arbuscular mycorrhizal fungi (AMF) and Pseudomonas bacteria, can interact with plants individually or collectively to improve plant growth and resistance to pests and disease. However, the effects of AMF, Pseudomonas, and their interactions on plant responses to insect herbivores remain unclear.

View Article and Find Full Text PDF

Enhanced propionate degradation and CO electromethanogenesis in an up-flow dual-chamber electrocatalytic anaerobic bioreactor (UF-DC-EAB): Leveraging DIET-mediated syntrophy for microbial stability.

Water Res

December 2024

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China. Electronic address:

Anaerobic digestion faces numerous challenges, including high CO content in biogas and volatile fatty acids (such as propionate) accumulation in digestate. To address these issues, an up-flow dual-chamber electrocatalytic anaerobic bioreactor (UF-DC-EAB) was developed to enhance propionate degradation through microbial symbiosis while improving biogas quality via CO electromethanogenesis. Under the extreme conditions with propionate as the primary carbon source at 6-h HRT, the UF-DC-EAB achieved a propionate removal efficiency of 72.

View Article and Find Full Text PDF

Prokaryotes and eukaryotes secrete extracellular vesicles (EVs) into the surrounding milieu to preserve and transport elevated concentrations of biomolecules across long distances. EVs encapsulate metabolites, DNA, RNA, and proteins, whose abundance and composition fluctuate depending on environmental cues. EVs are involved in eukaryote-to-prokaryote communication owing to their ability to navigate different ecological niches and exchange molecular cargo between the two domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!