Sugar-Derived Amidines and Congeners: Structures, Glycosidase Inhibition and Applications.

Curr Med Chem

Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie, 4 rue Michel Brunet, 86073 Poitiers cedex 9, France.

Published: March 2022

Glycosidases, the enzymes responsible for the breakdown of glycoconjugates, including di-, oligo- and polysaccharides, are present across all kingdoms of life. The extreme chemical stability of the glycosidic bond combined with the catalytic rates achieved by glycosidases makes them among the most proficient of all enzymes. Given their multitude of roles in vivo, inhibition of these enzymes is highly attractive with potential in the treatment of a vast array of pathologies ranging from lysosomal storage and diabetes to viral infections. Therefore great efforts have been invested in the last three decades to design and synthesize inhibitors of glycosidases leading to a number of drugs currently on the market. Amongst the vast array of structures that have been disclosed, sugars incorporating an amidine moiety have been the focus of many research groups around the world because of their glycosidase transition state-like structure. In this review, we report and discuss the structure, the inhibition profile, and the use of these molecules, including related structural congeners as transition state analogs.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867329666211222164545DOI Listing

Publication Analysis

Top Keywords

vast array
8
sugar-derived amidines
4
amidines congeners
4
congeners structures
4
structures glycosidase
4
glycosidase inhibition
4
inhibition applications
4
applications glycosidases
4
glycosidases enzymes
4
enzymes responsible
4

Similar Publications

Transcriptome and Neuroendocrinome Responses to Environmental Stress in the Model and Pest Insect .

Int J Mol Sci

January 2025

Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China.

The fall armyworm, , is one of the most notorious pest insects, causing damage to more than 350 plant species, and is feared worldwide as an invasive pest species since it exhibits high adaptivity against environmental stress. Here, we therefore investigated its transcriptome responses to four different types of stresses, namely cold, heat, no water and no food. We used brain samples as our interest was in the neuroendocrine responses, while previous studies used whole bodies of larvae or moths.

View Article and Find Full Text PDF

Escherichia coli is one of the critical One Health pathogens due to its vast array of virulence and antimicrobial resistance genes. This study used multiplex PCR to determine the occurrence of virulence genes bfp, ompA, traT, eaeA, and stx1 among 50 multidrug-resistant (MDR) E. coli isolates from humans (n = 15), animals (n = 29), and the environment (n = 6) in Dar es Salaam, Tanzania.

View Article and Find Full Text PDF

The rapid growth of Internet of Things (IoT) devices necessitates efficient data compression techniques to manage the vast amounts of data they generate. Chemiresistive sensor arrays (CSAs), a simple yet essential component in IoT systems, produce large datasets due to their simultaneous multi-sensor operations. Classical principal component analysis (cPCA), a widely used solution for dimensionality reduction, often struggles to preserve critical information in complex datasets.

View Article and Find Full Text PDF

The fibula, despite being traditionally overlooked compared to the femur and the tibia, has recently received attention in primate functional morphology due to its correlation with the degree of arboreality (DOA). Highlighting further fibular features that are associated with arboreal habits would be key to improving palaeobiological inferences in fossil specimens. Here we present the first investigation on the trabecular bone structure of the primate fibula, focusing on the distal epiphysis, across a vast array of species.

View Article and Find Full Text PDF

Global dissemination of the beta-lactam resistance gene blaTEM-1 among pathogenic bacteria.

Sci Total Environ

January 2025

Department of Biotechnology, College of Applied Life Sciences, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam 50834, Republic of Korea.

Antibiotic resistance presents a burgeoning global health crisis, with over 70 % of pathogenic bacteria now exhibiting resistance to at least one antibiotic. This study leverages a vast dataset of 618,853 pathogenic bacterial genomes from the NCBI pathogen detection database, offering comprehensive insights into antibiotic resistance patterns, species-specific profiles, and transmission dynamics of resistant pathogens. We centered our investigation on the beta-lactam resistance gene blaTEM-1, found in 43,339 genomes, revealing its extensive distribution across diverse species and isolation sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!