We analyzed the relationship between gross primary productivity (GPP) and environmental factors at Sidaoqiao Superstation of the Ejina Oasis in China's Gobi Desert, by combining eddy flux and meteorological data from 2018 to 2019 and Sentinel-2 remote sensing images from 2017 to 2020. We evaluated the applicability of 12 remote sensing vegetation indices to simulate the growth of and extract key phenological metrics. A seven-parameter double-logistic function (DL-7) + global model function (GMF) was used to fit the growth curves of GPP and vegetation indices. Three key phenological metrics, , the start of the growing season (SOS), the peak of the growing season (POS), and the end of the growing season (EOS), were extracted for each year. Growing season degree days (GDD) and soil water content were the main environmental factors affecting the phenological dynamics of . Compared with 2018, the lower temperatures in 2019 resulted in slower accumulation rate of accumulated temperature before the SOS. required longer heat accumulation to enter growing season, which might cause later SOS in 2019. The hydrothermal conditions between SOS and POS were similar for 2018 and 2019. Howe-ver, the POS in 2019 was 8 days later than that in 2018, because of the late SOS in 2019. Following the POS in 2019, high GDD and low soil water content caused the to suffer from water stress, resulting in a shortened late growing season. The linear regression between the standardized Sentinel-2 vegetation index and the average value of GPP between 10:00 and 14:00 indicated that the enhanced vegetation index of the broadband vegetation index and the chlorophyll red edge index, inverted red edge chlorophyll index, and red-edge normalized difference vegetation index (NDVI705) of the narrowband vegetation index were highly consistent with the GPP of . Remote sensing extraction of SOS and POS of suggested that the Sentinel-2 narrowband vegetation index was more accurate than the broadband vegetation index. The modified chlorophyll absorption in reflectance index provided the most accurate extraction of SOS, while the MERIS terrestrial chlorophyll index provided the most accurate extraction of EOS. Conversely, the Sentinel-2 broadband vegetation index was the most accurate for extracting POS, especially the 2-band enhanced vegetation index and the near-infrared reflectance of vegetation. Overall, NDVI705 was the best index to estimate phenological metrics.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202112.007DOI Listing

Publication Analysis

Top Keywords

growing season
24
phenological metrics
16
vegetation
13
vegetation indices
12
key phenological
12
remote sensing
12
broadband vegetation
12
environmental factors
8
2018 2019
8
season sos
8

Similar Publications

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

Modeling the time series of scorpion stings in Southwestern Iran.

Arch Razi Inst

June 2024

Department of Public Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.

Scorpion stings pose a significant public health concern in Iran, resulting in approximately 45,000-50,000 cases and 19 deaths annually. The Khuzestan and Hormozgan provinces have the highest reported incidence rates, with an estimated 36,000 cases each year. This study focused on modeling the time series data of scorpion stings, specifically in Shoushtar City, from 2017 to 2022.

View Article and Find Full Text PDF

Rhizobacteria and silicon modulate defense, oxidative stress, and suppress blast disease in upland rice plants in low phosphorus soils under field conditions.

Planta

December 2024

Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil.

Rhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants. Association of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions.

View Article and Find Full Text PDF

A spatial triage of at-risk conifer forests to support seed collection efforts and sustainable forestry.

J Environ Manage

December 2024

Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

At-risk conifer stands growing in hot, arid conditions at low elevations may contain the most climate change-adapted seeds needed for sustainable forestry. This study used a triage framework to identify high-priority survey areas for Pinus ponderosa (Pipo) within a large region, by intersecting an updated range map with a map of seed zones and elevation bands (SZEBs). The framework assesses place-based climate change and potential wildfire risks by rank-order across 740 potential collection units.

View Article and Find Full Text PDF

Recovery in soil carbon stocks but reduced carbon stabilization after near-natural restoration in degraded alpine meadows.

Sci Rep

December 2024

Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.

Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!