Calcium is required for the functioning of numerous biological processes and is essential for skeletal health. The major source of new calcium is from the diet. The central role of vitamin D in the maintenance of calcium homeostasis is to increase the absorption of ingested calcium from the intestine. The critical importance of vitamin D in this process is noted in the causal link between vitamin D deficiency and rickets, as well as in studies using genetically modified mice including mice deficient in the vitamin D receptor ( null mice) or in the cytochrome P-450 enzyme, 25-hydroxyvitamin D-1α- hydroxylase (CYP27B1) that converts 25-hydroxyvitamin D to the hormonally active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)D] ( null mice). When these mice are fed diets with high calcium and lactose, rickets is prevented. The studies using mouse models provide supporting evidence indicating that the major physiological function of 1,25(OH)D/VDR is intestinal calcium absorption. This review summarizes what is known about mechanisms involved in vitamin D-regulated intestinal calcium absorption. Recent studies suggest that vitamin D does not affect a single entity, but that a complex network of calcium-regulating components is involved in the process of 1,25(OH)D-mediated active intestinal calcium absorption. In addition, numerous 1,25(OH)D actions in the intestine have been described independent of calcium absorption. Although the translatability to humans requires further definition, an overview is presented that provides compelling evidence from the laboratory of 1,25(OH)D intestinal effects, which include the regulation of adhesion molecules to enhance barrier function, the regulation of intestinal stem cell function, cellular homeostasis of other divalent cations, the regulation of drug metabolizing enzymes, and anti-inflammatory effects. © 2021 The Author. published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674771 | PMC |
http://dx.doi.org/10.1002/jbm4.10554 | DOI Listing |
Carbohydr Polym
March 2025
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:
Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched.
View Article and Find Full Text PDFBiomacromolecules
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
Hemostasis is the initial step in wound healing, yet significant challenges, such as massive bleeding and infection, often arise. In this study, we developed amphiphilic biodegradable polyester-based segmented polyurethane (SPU) microspheres modified with epigallocatechin gallate (EGCG)-Ag nanoparticles and calcium-alginate cross-linking shell, combining blood absorption with the pro-coagulation properties of Ca and the negative charge of EGCG for synergistic hemostatic effects across various stages of the coagulation cascade. The in vitro blood clotting time of the SPU@EAg@CaAlg microsphere (328.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
Background: The parathyroid calcium-sensing receptor (CASR) controls the release of parathyroid hormone (PTH) in response to changes in serum calcium levels. Activation of the renal CASR increases urinary calcium excretion and is particularly important when CASR-dependent reductions in PTH fail to lower serum calcium. However, the role of the renal CASR in protecting against hypercalcemia and the direct effects of chronic CASR activation on tubular calcium handling remains to be fully elucidated.
View Article and Find Full Text PDFInorg Chem
January 2025
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
Using ab initio based molecular dynamics and electronic structure calculations, we show that Zn impurities in hydrated amorphous calcium carbonate (ACC) have a much lower coordination number than other divalent impurities due to covalent interactions between the 3d Zn shell and the oxygen atoms of the carbonate and water groups. The local structure around Zn in ACC, including the predicted low coordination number, is confirmed by X-ray absorption spectroscopy of synthetic Zn-bearing ACC. The strong Zn-O chemical interaction leads to substantial water dissociation and slightly disrupts the hydrogen bonding network.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!