This is a review of research on "Precision Behavioral Management" of substance use disorder (SUD). America is experiencing a high prevalence of substance use disorder, primarily involving legal and illegal opioid use. A 3000% increase in treatment for substance abuse has occurred between 2000 and 2016. Unfortunately, present day treatment of opioid abuse involves providing replacement therapy with powerful opioids to, at best, induce harm reduction, not prophylaxis. These interventions do not enhance gene expression and restore the balance of the brain reward system's neurotransmitters. We are proposing a generalized approach called "Precision Behavioral Management". This approach includes 1) using the Genetic Addiction Risk Severity (GARS, a 10 candidate polymorphic gene panel shown to predict ASI-alcohol and drug severity) to assess early pre-disposition to substance use disorder; 2) using a validated reward deficiency syndrome (RDS) questionnaire; 3) utilization of the Comprehensive Analysis of Reported Drugs (CARD™) to assess treatment compliance and abstinence from illicit drugs during treatment, and, importantly; 4) utilization of a "Pro-dopamine regulator (KB220)" (via IV or oral [KB220Z] delivery systems) to optimize gene expression, restore the balance of the Brain Reward Cascade's neurotransmitter systems and prevent relapse by induction of dopamine homeostasis, and; 5) utilization of targeted DNA polymorphic reward genes to direct mRNA genetic expression profiling during the treatment process. Incorporation of these events can be applied to not only the under-considered African-American RDS community, but all victims of RDS, as a demonstration of a paradigm shift that uniquely provides a novel putative "standard of care" based on DNA guided precision nutrition therapy to induce "dopamine homeostasis" and rebalance neurotransmitters in the Brain Reward Cascade. We are also developing a Reward Deficiency Syndrome Diagnostic Criteria (RDSDC) to assist in potential tertiary treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691196PMC
http://dx.doi.org/10.2147/PRBM.S292958DOI Listing

Publication Analysis

Top Keywords

reward deficiency
12
deficiency syndrome
12
"precision behavioral
12
behavioral management"
12
substance disorder
12
brain reward
12
syndrome rds
8
gene expression
8
expression restore
8
restore balance
8

Similar Publications

Menopausal symptoms of sleep disturbances, cognitive deficits, and hot flashes are understudied, in part due to the lack of animal models in which they co-occur. Common marmosets (Callithrix jacchus) are valuable nonhuman primates for studying these symptoms, and we examined changes in cognition (reversal learning), sleep (48 h/wk of sleep recorded by telemetry), and thermoregulation (nose temperature in response to mild external warming) in middle-aged, surgically-induced menopausal marmosets studied at baseline, during 3-week phases of ethinyl estradiol (EE, 4 μg/kg/day, p.o.

View Article and Find Full Text PDF

Depression and anxiety are associated with deficits in adjusting learning behaviour to changing outcome contingencies. This is likely to drive and maintain symptoms, for instance, by perpetuating negative biases or a sense of uncontrollability. Normalising such deficits in adaptive learning might therefore be a novel treatment target for affective disorders.

View Article and Find Full Text PDF

Neuronal growth regulator 1 (NEGR1) is a synaptic plasma membrane localized cell adhesion molecule implicated in a wide spectrum of psychiatric disorders. By RNAseq analysis of the transcriptomic changes in the brain of NEGR1-deficient mice, we found that NEGR1 deficiency affects the expression of the Gad2 gene. We show that glutamic acid decarboxylase 65 (GAD65), the Gad2 - encoded enzyme synthesizing the inhibitory neurotransmitter GABA on synaptic vesicles, accumulates non-synaptically in brains of NEGR1-deficient mice.

View Article and Find Full Text PDF

Introduction: The pedunculopontine nucleus (PPN) plays a role in coordinating complex behaviors and adapting to changing environmental conditions. The specific role of cholinergic neurons in PPN function is not well understood, but their ascending connectivity with basal ganglia and thalamus suggests involvement in adaptive functions.

Methods: We used a chemogenetic approach in ChAT::Cre rats to explore the specific contribution of PPN cholinergic neurons to behavioral flexibility, focusing on the adaptation to shifting reward contingencies in a Reversal Learning Task.

View Article and Find Full Text PDF
Article Synopsis
  • The opioid crisis has evolved into a global issue affecting various socioeconomic and cultural areas, with traditional treatment methods proving insufficient.
  • A narrative review was conducted using multiple databases to explore the complex factors contributing to this epidemic, acknowledging the potential for bias in article selection.
  • Despite some progress with Opioid Substitution Therapy, U.S. overdose deaths remain alarmingly high and are projected to increase; the authors suggest a need for a new treatment approach that targets brain neurotransmitter systems for better management.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!