This work reports initial results on the effect of low concentrations (ppm level) of a stabilizing agent (2,6-di--butyl-4-methylphenol, BHT) present in an off-the-shelf solvent on the catalyst performance for the hydrogenolysis of γ-butyrolactone over Cu-ZnO-based catalysts. Tetrahydrofuran (THF) was employed as an alternative solvent in the hydrogenolysis of γ-butyrolactone. It was found that the Cu-ZnO catalyst performance using a reference solvent (1,4-dioxane) was good, meaning that the equilibrium conversion was achieved in 240 min, while a zero conversion was found when employing tetrahydrofuran. The deactivation was studied in more detail, arriving at the preliminary conclusion that one phenomenon seems to play a role: the poisoning effect of a solvent additive present at the ppm level (BHT) that appears to inhibit the reaction completely over a Cu-ZnO catalyst. The BHT effect was also visible over a commercial Cu-ZnO-MgO-AlO catalyst but less severe than that over the Cu-ZnO catalyst. Hence, the commercial catalyst is more tolerant to the solvent additive, probably due to the higher surface area. The study illustrates the importance of solvent choice and purification for applications such as three-phase-catalyzed reactions to achieve optimal performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8689444PMC
http://dx.doi.org/10.1021/acs.iecr.1c04080DOI Listing

Publication Analysis

Top Keywords

cu-zno catalyst
12
ppm level
8
catalyst performance
8
hydrogenolysis γ-butyrolactone
8
solvent additive
8
solvent
7
catalyst
6
solvent additive-induced
4
additive-induced deactivation
4
deactivation cu-znoalo-catalyzed
4

Similar Publications

Direct conversion of CO with renewable H to produce methanol provides a promising way for CO utilization and H storage. Cu/ZnO catalysts are active, but their activities depend on the preparation methods. Here, we reported a facile mechanical grinding method for the fast synthesis of Cu@zeolitic imidazolate framework-8 (ZIF-8) derived Cu/ZnO catalysts applied in CO hydrogenation to methanol.

View Article and Find Full Text PDF

Dimethyl ether (DME) is a versatile molecule, gaining increasing interest as a viable hydrogen and energy storage solution, pivotal for the transitioning from fossil fuels to environmentally friendly and sustainable energy supply. This research explores a novel approach for the direct conversion of CO to DME in a fixed-bed reactor, combining the Cu/ZnO/AlO methanol synthesis catalyst with supported heteropolyacids (HPAs). First, various HPAs, both commercially available and custom-synthesized, were immobilized on Montmorillonite K10.

View Article and Find Full Text PDF

We report a new synthetic strategy for preparing well-organised, spherical and mesoporous, mixed-metal, hollow-core@layered double hydroxides. Hollow-SiO@Cu Zn Mg Al-LDHs ( + + = 2.32 ± 0.

View Article and Find Full Text PDF

Endogenous Substances Utilization for Water Self-Purification Amplification Driven by Nonexpendable HO over a Micro-Potential Difference Surface.

Environ Sci Technol

December 2024

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.

Natural self-purification of water is limited by mass transfer processes between inert oxygen (O) and stable pollutants. This process must rely on large energy inputs and resource consumption, which have become a global challenge in the environmental field. Here, we greatly amplify this self-purification effect of natural dissolved oxygen (DO) by nonexpendable HO triggering a DRC catalyst with a micro-potential difference surface.

View Article and Find Full Text PDF

Ceria-based supported metal catalysts for the low-temperature water-gas shift reaction.

Chem Commun (Camb)

December 2024

Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Water-gas shift (WGS) reaction is a crucial step for the industrial production of hydrogen or upgrading the hydrogen generated from fossil or biomass sources by removing the residual CO. However, current industrial catalysts for this process, comprising Cu/ZnO and FeO-CrO, suffer from safety or environmental issues. In the past decades, ceria-based materials have attracted wide attention as WGS catalysts due to their abundant oxygen vacancies and tunable metal-support interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!