A design optimized prime editor with expanded scope and capability in plants.

Nat Plants

Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, People's Republic of China.

Published: January 2022

The ability to manipulate the genome in a programmable manner has illuminated biology and shown promise in plant breeding. Prime editing, a versatile gene-editing approach that directly writes new genetic information into a specified DNA site without requiring double-strand DNA breaks, suffers from low efficiency in plants. In this study, N-terminal reverse transcriptase-Cas9 nickase fusion performed better in rice than the commonly applied C-terminal fusion. In addition, introduction of multiple-nucleotide substitutions in the reverse transcriptase template stimulated prime editing with enhanced efficiency. By using these two methods synergistically, prime editing with an average editing frequency as high as 24.3% at 13 endogenous targets in rice transgenic plants, 6.2% at four targets in maize protoplasts and 12.5% in human cells was achieved, which is two- to threefold higher than the original editor, Prime Editor 3. Therefore, our optimized approach has potential to make more formerly non-editable target sites editable, and expands the scope and capabilities of prime editing in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-021-01043-4DOI Listing

Publication Analysis

Top Keywords

prime editing
16
prime editor
8
prime
6
editing
5
design optimized
4
optimized prime
4
editor expanded
4
expanded scope
4
scope capability
4
capability plants
4

Similar Publications

Delivery of Prime editing in human stem cells using pseudoviral NanoScribes particles.

Nat Commun

January 2025

CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.

Prime Editing can rewrite genes in living cells by allowing point mutations, deletions, or insertion of small DNA sequences with high precision. However, its safe and efficient delivery into human stem cells remains a technical challenge. In this report, we engineer Nanoscribes, virus-like particles that encapsidate ribonucleoprotein complexes of the Prime Editing system and allow their delivery into recipient cells.

View Article and Find Full Text PDF

Perfecting prime editing: achieving precise edits in dicots.

Trends Plant Sci

January 2025

Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Jhang Road, Faisalabad, Pakistan; Jamil ur Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan. Electronic address:

Prime editing (PE), a precise CRISPR-based method, has worked well in some plants but faces challenges in dicots. Vu and colleagues developed new PE tools that greatly improve PE efficiency in dicots, enabling accurate, heritable genome edits. This advance marks a breakthrough that could revolutionize crop improvement and plant biotechnology.

View Article and Find Full Text PDF
Article Synopsis
  • Rice is a vital global staple, feeding over half the population but facing threats from climate change, pests, and diseases that compromise its sustainability.
  • CRISPR-Cas9 technology offers a promising solution for improving rice yield and resilience by allowing precise gene editing without introducing foreign DNA.
  • This study outlines various CRISPR-based techniques to enhance rice's ability to withstand environmental stressors, emphasizing the importance of integrating genetic improvements with established farming practices to ensure food security.
View Article and Find Full Text PDF

Prime editing enables precise and efficient genome editing, but its efficacy is hindered by pegRNA's 3' extension, forming secondary structures due to high complementarity with the protospacer. The continuous presence of the prime editing system also leads to unintended indel formation, raising safety concerns for therapeutic applications. To address these challenges, we develop a mismatched pegRNA (mpegRNA) strategy that introduces mismatched bases into the pegRNA protospacer, reducing complementarity and secondary structure formation, and preventing sustained activity.

View Article and Find Full Text PDF

Improved split prime editors enable efficient in vivo genome editing.

Cell Rep

December 2024

Westlake Genetech, Ltd., No. 1 Yunmeng Road, Cloud Town, Hangzhou 310024, China; School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310030, China. Electronic address:

Efficient prime editor (PE) delivery in vivo is critical for realizing its full potential in disease modeling and therapeutic correction. Although PE has been divided into two halves and delivered using dual adeno-associated viruses (AAVs), the editing efficiency at different gene loci varies among split sites. Furthermore, efficient split sites within Cas9 nickase (Cas9n) are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!