Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Global shortages in the supply of SARS-CoV-2 vaccines have resulted in campaigns to first inoculate individuals at highest risk for death from COVID-19. Here, we develop a predictive model of COVID-19-related death using longitudinal clinical data from patients in metropolitan Detroit.
Methods: All individuals included in the analysis had a laboratory-confirmed SARS-CoV-2 infection. Thirty-six pre-existing conditions with a false discovery rate p<0.05 were combined with other demographic variables to develop a parsimonious prediction model using least absolute shrinkage and selection operator regression. The model was then prospectively validated in a separate set of individuals with confirmed COVID-19.
Results: The study population consisted of 15 502 individuals with laboratory-confirmed SARS-CoV-2. The main prediction model was developed using data from 11 635 individuals with 709 reported deaths (case fatality ratio 6.1%). The final prediction model consisted of 14 variables with 11 comorbidities. This model was then prospectively assessed among the remaining 3867 individuals (185 deaths; case fatality ratio 4.8%). When compared with using an age threshold of 65 years, the 14-variable model detected 6% more of the individuals who would die from COVID-19. However, below age 45 years and its risk equivalent, there was no benefit to using the prediction model over age alone.
Discussion: Using a prediction model, such as the one described here, may help identify individuals who would most benefit from COVID-19 inoculation, and thereby may produce more dramatic initial drops in deaths through targeted vaccination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705216 | PMC |
http://dx.doi.org/10.1136/bmjresp-2021-001016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!