Ambient volatile organic compounds at a receptor site in the Pearl River Delta region: Variations, source apportionment and effects on ozone formation.

J Environ Sci (China)

The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China. Electronic address:

Published: January 2022

We present the continuously measurements of volatile organic compounds (VOCs) at a receptor site (Wan Qing Sha, WQS) in the Pearl River Delta (PRD) region from September to November of 2017. The average mixing ratios of total VOCs (TVOCs) was 36.3 ± 27.9 ppbv with the dominant contribution from alkanes (55.5%), followed by aromatics (33.3%). The diurnal variation of TVOCs showed a strong photochemical consumption during daytime, resulting in the formation of ozone (O). Five VOC sources were resolved by the positive matrix factorization (PMF) model, including solvent usage (28.6%), liquid petroleum gas (LPG) usage (24.4%), vehicle exhaust (21.0%), industrial emissions (13.2%) and gasoline evaporation (12.9%). The regional transport air masses from the upwind cities of south China can result in the elevated concentrations of TVOCs. Low ratios of TVOCs/NO (1.53 ± 0.88) suggested that the O formation regime at WQS site was VOC-limited, which also confirmed by a photochemical box model with the master chemical mechanism (PBM-MCM). Furthermore, the observation on high-O episode days revealed that frequent O outbreaks at WQS were mainly caused by the regional transport of anthropogenic VOCs especially for aromatics and the subsequent photochemical reactions. This study provides valuable information for policymakers to propose the effective control strategies on photochemical pollution in a regional perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2021.02.024DOI Listing

Publication Analysis

Top Keywords

volatile organic
8
organic compounds
8
receptor site
8
pearl river
8
river delta
8
regional transport
8
ambient volatile
4
compounds receptor
4
site pearl
4
delta region
4

Similar Publications

Machine Learning for Predicting Zearalenone Contamination Levels in Pet Food.

Toxins (Basel)

December 2024

Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China.

Zearalenone (ZEN) has been detected in both pet food ingredients and final products, causing acute toxicity and chronic health problems in pets. Therefore, the early detection of mycotoxin contamination in pet food is crucial for ensuring the safety and well-being of animals. This study aims to develop a rapid and cost-effective method using an electronic nose (E-nose) and machine learning algorithms to predict whether ZEN levels in pet food exceed the regulatory limits (250 µg/kg), as set by Chinese pet food legislation.

View Article and Find Full Text PDF

Volatile organic compounds, colloquially referred to as "terpenes", have been proposed to impact the therapeutic qualities that are traditionally ascribed to cannabis. However, the contribution of these terpenes in anxiety, at relevant levels and exposure methods common with cannabis use, is lacking empirical assessment. We tested the anxiolytic properties of two prominent cannabis terpenes, linalool and β-myrcene, in male and female mice using short duration vapor pulls to model human inhalation when combusting flower or vaping cannabis oil.

View Article and Find Full Text PDF

Oxygenated VOC Detection Using SnO Nanoparticles with Uniformly Dispersed BiO.

Nanomaterials (Basel)

December 2024

Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan.

BiO particles are introduced as foreign additives onto SnO nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). BiO-loaded SnO materials are prepared via the impregnation method followed by calcination treatment. The abundant BiO/SnO interfaces are constructed by the uniform dispersion of BiO particles on the SnO surface.

View Article and Find Full Text PDF

Chemical Diversity of Mediterranean Seagrasses Volatilome.

Metabolites

December 2024

CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France.

Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.

View Article and Find Full Text PDF

The interaction between plants and microorganisms plays a major role in plant growth promotion and disease management. While most microorganisms directly influence plant health, some indirectly support growth through pest and disease suppression. Endophytic entomopathogenic fungi are diverse, easily localized, and have long-lasting effects on insect pests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!