Objectives: SARS-CoV-2, severe respiratory syndrome coronavirus-2, is an RNA virus that emerged from China sweeping the globe in the form of a pandemic that became an international public health concern. This pilot study aimed to describe the genetic variation and molecular epidemiology of SARS-CoV-2 in Palestine in fall 2020.
Results: To achieve these aims, whole genome sequencing of SARS-CoV-2, phylogenetic analysis, haplotype networking and genetic diversity analysis were performed. These analyses revealed a unique spike mutation H245N that has never been reported before. The phylogenetic analysis depicted that three clusters existed in Palestinian SARS-CoV-2 genome sequences, in which cluster-I comprised the majority of clusters by 90%. Congruently, the haplotype network analysis depicted the same three clusters with a total of 39 haplotypes. The genetic diversity analysis showed that Cluster-I is highly diverse as confirmed by statistically significant mutation rate indices, Tajima's D and Fu-Li's-F tests (- 2.11 and 2.74, respectively), highest number of mutations (Eta = 120), highest number of haplotypes (h = 17), and highest average number of nucleotide differences between any two sequences (S = 118). The study confirmed the high genetic diversity among the Palestinian of SARS-CoV-2 which possessed high number of mutations including one which was reported for the first time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698662 | PMC |
http://dx.doi.org/10.1186/s13104-021-05874-4 | DOI Listing |
Quant Plant Biol
December 2024
Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Trees, living for centuries, accumulate somatic mutations in their growing trunks and branches, causing genetic divergence within a single tree. Stem cell lineages in a shoot apical meristem accumulate mutations independently and diverge from each other. In plants, somatic mutations can alter the genetic composition of reproductive organs and gametes, impacting future generations.
View Article and Find Full Text PDFMitochondrial DNA B Resour
December 2024
College of Life Sciences, Zhejiang Normal University, Jinhua, PR China.
(Compositae) is a perennial herbaceous plant owning high economic, feeding and medicinal values. It is widely distributed in desertification and saline alkali areas. The complete chloroplast genome was firstly reported in this study.
View Article and Find Full Text PDFMitochondrial DNA B Resour
December 2024
Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang, China.
Rourke 2002 is an evergreen herbaceous flower with high ornamental value. In this study, we sequenced the complete chloroplast (cp) genome of and reported it for the first time. The cp genome was 158,914 base pairs (bp) in total length, including two inverted repeats (IRs, 27,052 bp), separated by a large single-copy region (LSC, 86,519 bp) and a small single-copy region (SSC, 18,291 bp).
View Article and Find Full Text PDFBiochem Genet
January 2025
Posgraduate Program in Dentistry, Institute of Health Sciences, Fluminense Federal University, Nova Friburgo, RJ, Brazil.
To analyze whether the single-nucleotide polymorphisms (SNPs) in Matrix metalloproteinases 2, 3, and 9 (MMP2, MMP3, and MMP9), Tissue Inhibitor of Metalloproteinases 1 and 2 (TIMP1 and TIMP2), methionine synthase (MTR) and methionine synthase reductase (MTRR) influence delayed deciduous tooth eruption (DDTE). This cross-sectional study included 1060 biologic unrelated children (aged between 6 and 36 months) of both sexes, selected from 25 public schools in Nova Friburgo, Rio de Janeiro, Brazil. Oral examination was conducted and DDTE was defined by the absence of gingival eruption according to a chronology based on the Brazilian population.
View Article and Find Full Text PDFEnviron Microbiol Rep
February 2025
IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Universidad de Cantabria, Santander, Spain.
Microbes inhabit virtually all river ecosystems, influencing energy flow and playing a key role in global sustainability and climate change. Yet, there is uncertainty about how various taxonomic groups respond to large-scale factors in river networks. We analysed microbial community richness and composition across six European Atlantic catchments using environmental DNA sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!