Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of enhanced drought and salt tolerance in , which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of -overexpressing and hairy root soybean plants of RNAi. The present study identified as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708795 | PMC |
http://dx.doi.org/10.3390/ijms222413501 | DOI Listing |
Plants (Basel)
January 2025
College of Horticulture, Pomology Institute, Shanxi Agricultural University, Jinzhong 030800, China.
Amino acids in wine grapes function as precursors for various secondary metabolites and play a vital role in plant growth, development, and stress resistance. The amino acid/auxin permease () genes encode a large family of transporters; however, the identification and function of the gene family in grapes remain limited. Consequently, we conducted a comprehensive bioinformatics analysis of all genes in grapes, encompassing genome sequence analysis, conserved protein domain identification, chromosomal localization, phylogenetic relationship analysis, and gene expression profiling.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China.
() genes play a crucial role in the response to abiotic stress and are important target genes for research on plant stress tolerance mechanisms. Bunge is a promising candidate tree species for investigating the tolerance mechanism of woody plants against abiotic stress. In our previous study, was identified as being associated with seed drought tolerance.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Sichuan Academy of Grassland Science, Chengdu 611731, China.
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a critical role in the regulation of gene expression and are indispensable in orchestrating plant growth and development while also improving resistance to environmental stressors. Although it has been identified across a wide array of plant species, there have been no comprehensive studies on the gene family in centipedegrass [ (Munro) Hack.], which is an important warm-season perennial C4 turfgrass.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R.
View Article and Find Full Text PDFSci Rep
January 2025
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!