The effective and minimally invasive radiation biomarkers are valuable for exposure scenarios in nuclear accidents or space missions. Recent studies have opened the new sight of circulating small non-coding RNA (sncRNA) as radiation biomarkers. The tRNA-derived small RNA (tsRNA) is a new class of sncRNA. It is more abundant than other kinds of sncRNAs in extracellular vesicles or blood, presenting great potential as promising biomarkers. However, the circulating tsRNAs in response to ionizing radiation have not been reported. In this research, Kunming mice were total-body exposed to 0.05-2 Gy of carbon ions, protons, or X-rays, and the RNA sequencing was performed to profile the expression of sncRNAs in serum. After conditional screening and validation, we firstly identified 5 tsRNAs including 4 tRNA-related fragments (tRFs) and 1 tRNA half (tiRNA) which showed a significant level decrease after exposure to three kinds of radiations. Moreover, the radiation responses of these 5 serum tsRNAs were reproduced in other mouse strains, and the sequences of them could be detected in serum of humans. Furthermore, we developed multi-factor models based on tsRNA biomarkers to indicate the degree of radiation exposure with high sensitivity and specificity. These findings suggest that the circulating tsRNAs can serve as new minimally invasive biomarkers and can make a triage or dose assessment from blood sample collection within 4 h in exposure scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706565 | PMC |
http://dx.doi.org/10.3390/ijms222413476 | DOI Listing |
Acad Radiol
January 2025
Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.). Electronic address:
Rationale And Objectives: Cardiovascular toxicity is a well-known complication of thoracic radiation therapy (RT), leading to increased morbidity and mortality, but existing techniques to predict cardiovascular toxicity have limitations. Predictive biomarkers of cardiovascular toxicity may help to maximize patient outcomes.
Methods: The machine learning optimal biomarker (OBM) method was employed to predict development of cardiotoxicity (based on serial echocardiographic measurements of left ventricular ejection fraction and longitudinal strain) from computed tomography (CT) images in patients with thoracic malignancy undergoing RT.
Background: Investigators and funding organizations desire knowledge on topics and trends in publicly funded research but current efforts for manual categorization have been limited in breadth and depth of understanding.
Purpose: We present a semi-automated analysis of 21 years of R-type National Cancer Institute (NCI) grants to departments of radiation oncology and radiology using natural language processing (NLP).
Methods: We selected all non-education R-type NCI grants from 2000 to 2020 awarded to departments of radiation oncology/radiology with affiliated schools of medicine.
Mol Immunol
January 2025
Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China. Electronic address:
Purpose: To determine the characteristic changes of peripheral blood T cells and identify potential biomarkers that associated with the clinical efficacy of combined immunotherapy and anti-angiogenic therapy in patients with advanced squamous non-small cell lung cancer (NSCLC).
Methods: We performed a comprehensive immunological assessment of peripheral blood mononuclear cell samples from advanced squamous NSCLC patients before and after combination of immunotherapy (Camrelizumab) and anti-angiogenic therapy (Apatinib) using spectral flow cytometry. Correlations between these immunological features and clinical efficacy were analyzed.
Drug Dev Res
February 2025
Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
We aimed to elucidate the prognostic and immunological roles of B cell-related genes in colorectal cancer (CRC). This study comprehensively integrated data from single-cell RNA-sequencing, TCGA, GEO, IMvigor210, GDSC, CancerSEA, HPA, and TISIDB databases to explore prognostic implications and immunological significance of B cell-related gene signature in CRC. We identified seven prognostically significant B cell-related genes for constructing a risk score.
View Article and Find Full Text PDFBackground: For patients with head and neck squamous cell carcinoma (HNSCC), failure of definitive radiation combined with cisplatin nearly universally results in death. Although hyperactivation of the Nrf2 pathway can drive radiation and cisplatin resistance along with suppressed anti-tumor immunity, treatment-refractory HNSCC tumors may retain sensitivity to targeted agents secondary to synergistic lethality with other oncogenic drivers (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!