Epigenetic changes constitute one of the processes that is involved in the mechanisms of carcinogenicity. They include dysregulation of DNA methylation processes, disruption of post-translational patterns of histone modifications, and changes in the composition and/or organization of chromatin. Benzo(a)pyrene (BaP) influences DNA methylation and, depending on its concentrations, as well as the type of cell, tissue and organism it causes hypomethylation or hypermethylation. Moreover, the exposure to polyaromatic hydrocarbons (PAHs), including BaP in tobacco smoke results in an altered methylation status of the offsprings. Researches have indicated a potential relationship between toxicity of BaP and deregulation of the biotin homeostasis pathway that plays an important role in the process of carcinogenesis. Animal studies have shown that parental-induced BaP toxicity can be passed on to the F1 generation as studied on marine medaka (), and the underlying mechanism is likely related to a disturbance in the circadian rhythm. In addition, ancestral exposure of fish to BaP may cause intergenerational osteotoxicity in non-exposed F3 offsprings. Epidemiological studies of lung cancer have indicated that exposure to BaP is associated with changes in methylation levels at 15 CpG; therefore, changes in DNA methylation may be considered as potential mediators of BaP-induced lung cancer. The mechanism of epigenetic changes induced by BaP are mainly due to the formation of CpG-BPDE adducts, between metabolite of BaP-BPDE and CpG, which leads to changes in the level of 5-methylcytosine. BaP also acts through inhibition of DNA methyltransferases activity, as well as by increasing histone deacetylases HDACs, i.e., HDAC2 and HDAC3 activity. The aim of this review is to discuss the mechanism of the epigenetic action of BaP on the basis of the latest publications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707600 | PMC |
http://dx.doi.org/10.3390/ijms222413453 | DOI Listing |
NAR Genom Bioinform
March 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Pathology, The seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, P.R. China.
Endometrial carcinoma (EC) is the most common malignancies of the female reproductive system in developed countries and areas. Ultrasound-guided and hysteroscopic samplings are commonly used to diagnose EC. However, clinicians question their diagnostic efficacy and the associated patient discomfort.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA.
Epigenetic clocks are a common group of tools used to measure biological aging-the progressive deterioration of cells, tissues, and organs. Epigenetic clocks have been trained almost exclusively using blood-based tissues, but there is growing interest in estimating epigenetic age using less-invasive oral-based tissues (i.e.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy.
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.
Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!