AI Article Synopsis

  • The study found that mutations in oncNRAS, when induced at an early stage of embryonal rhabdomyosarcoma (ERMS), accelerate tumor growth but do not change tumor differentiation or initiate tumors.
  • Earlier induction of oncNRAS at 2 weeks leads to shorter ERMS-free survival and a higher incidence of tumors compared to later induction.
  • The research highlights that the impact of oncRAS mutations varies based on the specific isoform and the timing of their occurrence during tumor development.

Article Abstract

In the mouse model for embryonal rhabdomyosarcoma (ERMS), we recently showed that oncogenic (onc) H-, K- or NRAS mutations do not influence tumor growth when induced at the advanced, full-blown tumor stage. However, when induced at the invisible ERMS precursor stage at 4 weeks of age, tumor development was enforced upon oncHRAS and oncKRAS but not by oncNRAS, which instead initiated tumor differentiation. These data indicate that oncRAS-associated processes differ from each other in dependency on the isoform and their occurrence during tumor development. Here, we investigated the outcome of oncNRAS induction at an earlier ERMS precursor stage at 2 weeks of age. In this setting, oncNRAS accelerates tumor growth because it significantly shortens the ERMS-free survival and increases the ERMS incidence. However, it does not seem to alter the differentiation of the tumors. It is also not involved in tumor initiation. Together, these data show that oncNRAS mutations can accelerate tumor growth when targeting immature ERMS precursors within a specific time window, in which the precursors are permissive to the mutation and show that oncNRAS-associated processes differ from each other in dependency on their occurrence during tumor development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703790PMC
http://dx.doi.org/10.3390/ijms222413377DOI Listing

Publication Analysis

Top Keywords

tumor development
16
tumor growth
12
tumor
10
specific time
8
erms precursor
8
precursor stage
8
stage weeks
8
weeks age
8
processes differ
8
differ dependency
8

Similar Publications

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!