Lung adenocarcinoma has a strong propensity to metastasize to the brain. The brain metastases are difficult to treat and can cause significant morbidity and mortality. Identifying patients with increased risk of developing brain metastasis can assist medical decision-making, facilitating a closer surveillance or justifying a preventive treatment. We analyzed 27 lung adenocarcinoma patients who received a primary lung tumor resection and developed metastases within 5 years after the surgery. Among these patients, 16 developed brain metastases and 11 developed non-brain metastases only. We performed targeted DNA sequencing, RNA sequencing and immunohistochemistry to characterize the difference between the primary tumors. We also compared our findings to the published data of brain-tropic and non-brain-tropic lung adenocarcinoma cell lines. The results demonstrated that the targeted tumor DNA sequencing did not reveal a significant difference between the groups, but the RNA sequencing identified 390 differentially expressed genes. A gene expression signature including could identify 100% of brain-metastasizing tumors with a 91% specificity. However, when compared to the differentially expressed genes between brain-tropic and non-brain-tropic lung cancer cell lines, a different set of genes was shared between the patient data and the cell line data, which include many genes implicated in the cancer-glia/neuron interaction. Our findings indicate that it is possible to identify lung adenocarcinoma patients at the highest risk for brain metastasis by analyzing the primary tumor. Further investigation is required to elucidate the mechanism behind these associations and to identify potential treatment targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703941 | PMC |
http://dx.doi.org/10.3390/ijms222413374 | DOI Listing |
Front Immunol
January 2025
Tianjin Chest Hospital, Tianjin University, Tianjin, China.
Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.
Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.
Cureus
December 2024
Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK.
Background Lung cancer is the most frequent cause of cancer-related deaths and the most common type of cancer globally. It is generally classified into two main histologic subtypes: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC is the most prevalent type and is enriched with genetic and molecular diversity.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu road, Shapingba district, Chongqing 400030, China.
Purpose: The aim of this study was to explore and develop a preoperative and noninvasive model for predicting spread through air spaces (STAS) status in lung adenocarcinoma (LUAD) with diameter ≤ 3 cm.
Methods: This multicenter retrospective study included 640 LUAD patients. Center I included 525 patients (368 in the training cohort and 157 in the validation cohort); center II included 115 patients (the test cohort).
J Immunother Cancer
January 2025
Route de la Corniche 3B, Novigenix SA, 1066, Epalinges, Switzerland
Background: More efficient therapeutic options for non-small cell lung cancer (NSCLC) are needed as the survival at 5 years of metastatic disease is near zero. In this regard, we used a preclinical model of metastatic lung adenocarcinoma (SV2-OVA) to assess the safety and efficacy of novel radio-immunotherapy combining hypofractionated radiotherapy (HRT) with muPD1-IL2v immunocytokine and muFAP-CD40 bispecific antibody.
Methods: We evaluated the changes in the lung immune microenvironment at multiple timepoints following combination therapies and investigated their underlying antitumor mechanisms.
Immunobiology
January 2025
Department of Anesthesiology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China. Electronic address:
COX inhibitors are frequently used for pain management during the perioperative period and may influence tumor progression and the tumor microenvironment by modulating inflammation and immune responses. This study investigates the effects of COX inhibitors on tumor growth and the immune microenvironment. In vivo experiments demonstrate that COX inhibitors can reduce tumor cell growth, elevate PD-L1 expression on tumor cells, and enhance the proportion of myeloid cells within the tumor immune microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!