Catalytic MATα1 subunits associate into kinetically distinct homo-dimers (MAT III) and homo-tetramers (MAT I) that synthesize S-adenosylmethionine in the adult liver. Pathological reductions in S-adenosylmethionine levels correlate with MAT III accumulation; thus, it is important to know the determinants of dimer-dimer associations. Here, polar interactions (<3.5 Å) at the rat MAT I dimer-dimer interface were disrupted by site-directed mutagenesis. Heterologous expression rendered decreased soluble mutant MATα1 levels that appeared mostly as dimers. Substitutions at the B1-B2 or B3-C1 β-strand loops, or changes in charge on helix α2 located behind, induced either MAT III or MAT I accumulation. Notably, double mutants combining neutral changes on helix α2 with substitutions at either β-strand loop further increased MAT III content. Mutations had negligible impact on secondary or tertiary protein structure, but induced changes of 5-10 °C in thermal stability. All mutants preserved tripolyphosphatase activity, although AdoMet synthesis was only detected in single mutants. Kinetic parameters were altered in all purified proteins, their AdoMet synthesis V and methionine affinities correlating with the association state induced by the corresponding mutations. In conclusion, polar interactions control MATα1 tetramerization and kinetics, diverse effects being induced by changes on opposite β-sheet loops putatively leading to subtle variations in central domain β-sheet orientation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703375 | PMC |
http://dx.doi.org/10.3390/ijms222413206 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Physics, Assam University, Silchar-788011, India.
Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States.
The propensities for sigma hole bonding by halogen atoms bonded to central atoms below period 2 in the periodic table remain to be systematically examined. Using iodine as our reference halogen atom, a comprehensive analysis of the tendencies for halogen and other forms of significant sigma hole bonding by simple compounds of main group atoms from H to At is accomplished. An examination of the structure and bonding of complexes formed by those iodine-substituted main group compounds and sigma donating bases (ammonia and trimethylamine) is performed to probe the viability of halogen bonding by heavy main group RM-I compounds in particular, given the historic focus on period 2.
View Article and Find Full Text PDFMater Today Bio
February 2025
Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis.
View Article and Find Full Text PDFACS Nano
January 2025
IBM Almaden Research Center, San Jose 95120-6099, California, United States.
Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
Interlayer excitons (IXs) in the heterostructure of monolayer transition metal dichalcogenides (TMDs) are considered as a promising platform to study fundamental exciton physics and for potential applications of next generation optoelectronic devices. The IXs trapped in the moiré potential in a twisted monolayer TMD heterostructure such as MoSe/WSe form zero-dimensional (0D) moiré excitons. Introducing an atomically thin insulating layer between TMD monolayers in a twisted heterostructure would modulate the moiré potential landscape, thereby tuning 0D IXs into 2D IXs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!