Laser Fabrication of Nanoholes on Silica through Surface Window Assisted Nano-Drilling (SWAN).

Nanomaterials (Basel)

State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Published: December 2021

Nano-structures have significant applications in many fields such as chip fabrications, nanorobotics, and solar cells. However, realizing nanoscale structures on hard and brittle materials is still challenging. In this paper, when processing the silica surface with a tightly focused Bessel beam, the smallest nanohole with ~20 nm diameter has been realized by precisely controlling the interior and superficial interaction of the silica material. An effective surface window assisted nano-drilling (SWAN) mechanism is proposed to explain the generation of such a deep subwavelength structure, which is supported by the simulation results of energy depositions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708907PMC
http://dx.doi.org/10.3390/nano11123340DOI Listing

Publication Analysis

Top Keywords

silica surface
8
surface window
8
window assisted
8
assisted nano-drilling
8
nano-drilling swan
8
laser fabrication
4
fabrication nanoholes
4
nanoholes silica
4
swan nano-structures
4
nano-structures applications
4

Similar Publications

Characterization of the Micro-Morphology and Compositional Distribution of Chang'e-5 Lunar Soil Mineral Surfaces Using TOF-SIMS.

Adv Sci (Weinh)

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.

View Article and Find Full Text PDF

In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.

View Article and Find Full Text PDF

Polyelectrolyte brushes (PEBs) undergo conformational transitions due to changes in pH and/or ionic strength, which is leveraged as smart surfaces and on-demand drug-release systems. However, probing conformational transitions of functional PEBs has remained challenging due to low spatiotemporal resolution of characterization methods. Herein, fluorescently-coupled PEBs are devised that give rise to Förster Resonance Energy Transfer (FRET) intrinsically coupled to conformational transitions of chains.

View Article and Find Full Text PDF

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

Insights into Calcium Phosphate Formation Induced by the Dissolution of 45S5 Bioactive Glass.

ACS Biomater Sci Eng

January 2025

CEA, DES, ISEC, DPME, SEME, University of Montpellier, Marcoule, Bagnols-sur-Cèze F-30207, France.

Although models have been proposed to explain the mechanisms of bioglass (BG) dissolution and subsequent calcium phosphate (CaP) mineralization, open questions remain. The processes in which phase transition occurs in aqueous solutions and their dynamics remain underexplored partly because traditional instruments/techniques do not allow for direct observations at the adequate time and length scales at which such phase transformations occur. For instance, given the crucial role of the silica gel in CaP formation during BG dissolution, uncertainty exists about how such a silica gel forms on the BG surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!