The biological synthesis of nanoparticles is emerging as a potential method for nanoparticle synthesis due to its non-toxicity and simplicity. In the present study, a bacterium resistant to heavy metals was isolated from a metal-contaminated site and we aimed to report the synthesis of FeO nanoparticles via co-precipitation using bacterial exopolysaccharides (EPS) derived from _RMSN6 strains. A three-variable Box-Behnken design was used for determining the optimal conditions of the FeO NPs synthesis process. The synthesized FeO NPs were thoroughly characterized through multiple analytical techniques such as XRD, UV-Visible spectroscopy, FTIR spectroscopy and finally SEM analysis to understand the surface morphology. FeO NPs were then probed for the Cr(VI) ion adsorption studies. The important parameters such as optimization of initial concentration of Cr(VI) ions, effects of contact time, pH of the solution and contact time on quantity of Cr(VI) adsorbed were studied in detail. The maximum adsorption capacity of the nanoparticles was found to be 98.03 mg/g. The nanoparticles could retain up to 73% of their efficiency of chromium removal for up to 5 cycles. Additionally, prepared FeO NPs in the concentration were subjected to cytotoxicity studies using an MTT assay. The investigations using FeO NPs displayed a substantial dose-dependent effect on the A594 cells. The research elucidates that the FeO NPs synthesized from EPS of _RMSN6 can be used for the removal of heavy metal contaminants from wastewater.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705913 | PMC |
http://dx.doi.org/10.3390/nano11123290 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Natural and Computational Sciences, Wolaita Soddo University, P. Box 138, Wolaita Soddo, Ethiopia.
A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
Nanoplastics (NPs) have been found in natural environments. However, the sequestration of NPs and natural organic matter (NOM) coupled with the Fe(III) hydrolysis and subsequent iron oxides transformation remains unclear. Here, we investigated the behaviors of NPs during the dynamic transformation process of iron oxides in the presence of humic acids (HA).
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Physics, College of Science, University of Halabja, Halabja, Kurdistan Region, Iraq.
Background: Antimicrobial resistance (AMR) presents a serious threat to health, highlighting the urgent need for more effective antimicrobial agents with innovative mechanisms of action. Nanotechnology offers promising solutions by enabling the creation of nanoparticles (NPs) with antibacterial properties. This study aimed to explore the antibacterial, anti-biofilm, and anti-virulence effects of eco-friendly synthesized α-Fe₂O₃ nanoparticles (α-Fe₂O₃-NPs) against pathogenic bacteria.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!