The intensive development of nanodevices acting as two-state systems has motivated the search for nanoscale molecular structures whose dynamics are similar to those of bistable mechanical systems, such as Euler arches and Duffing oscillators. Of particular interest are the molecular structures capable of spontaneous vibrations and stochastic resonance. Recently, oligomeric molecules that were a few nanometers in size and exhibited the bistable dynamics of an Euler arch were identified through molecular dynamics simulations of short fragments of thermo-responsive polymers subject to force loading. In this article, we present molecular dynamics simulations of short pyridine-furan springs a few nanometers in size and demonstrate the bistable dynamics of a Duffing oscillator with thermally-activated spontaneous vibrations and stochastic resonance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707925 | PMC |
http://dx.doi.org/10.3390/nano11123264 | DOI Listing |
Front Neurosci
December 2024
Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States.
The expression of GABARs goes through large scale, evolutionarily conserved changes through the early postnatal period. While these changes have been well-studied in brain regions such as the hippocampus and sensory cortices, less is known about early developmental changes in other brain areas. The nucleus accumbens (NAc) is a major hub in the circuitry that mediates motivated behaviors and disruptions in NAc activity is a part of the neuropathology observed in mood and substance use disorders.
View Article and Find Full Text PDFTheor Popul Biol
December 2024
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver B.C., Canada, V6T 1Z2; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver B.C., Canada, V6T 1Z4.
Phages use bacterial host resources to replicate, intrinsically linking phage and host survival. To understand phage dynamics, it is essential to understand phage-host ecology. A key step in this ecology is infection of bacterial hosts.
View Article and Find Full Text PDFMath Biosci Eng
October 2024
Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia.
Effector CD8 cells lyse human immunodeficiency viruses (HIV)-infected CD4 cells by recognizing a viral peptide presented by human leukocyte antigens (HLA) on the CD4 cell surface, which plays an irreplaceable role in within-host HIV clearance. Using a semi-saturated lysing efficiency of a CD8 cell, we discuss a model that captures HIV dynamics with different magnitudes of lysing rate induced by different HLA alleles. With the aid of local stability analysis and bifurcation plots, exponential interactions among CD4 cells, HIV, and CD8 cells were investigated.
View Article and Find Full Text PDFMath Biosci Eng
November 2024
School of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, China.
The incompatible insect technique based on is a promising alternative to control mosquito-borne diseases, such as dengue fever, malaria, and Zika, which drives wild female mosquitoes sterility through a mechanism cytoplasmic incompatibility. A successful control program should be able to withstand the perturbation induced by the immigration of fertilized females from surrounding uncontrolled areas. In this paper, we formulated a system of delay differential equations, including larval and adult stages, interfered by -infected males.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Chemistry and Physics, Augusta State University, 2500 Walton Way, Augusta, Georgia 30904, USA.
We investigate the dynamical phases and phase transitions arising in a classical two-dimensional anisotropic XY model under the influence of a periodically driven temporal external magnetic field in the form of a symmetric square wave. We use a combination of finite temperature classical Monte Carlo simulation, implemented within a CPU+GPU paradigm, utilizing local dynamics provided by the Glauber algorithm and a phenomenological equation-of-motion approach based on relaxational dynamics governed by the time-dependent free energy within a mean-field approximation to study the model. We investigate several parameter regimes of the variables (magnetic field, anisotropy, and the external drive frequency) that influence the anisotropic XY system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!