A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role Played by Edge-Defects in the Optical Properties of Armchair Graphene Nanoribbons. | LitMetric

AI Article Synopsis

  • The study focuses on how manipulating edge defects in armchair graphene nanoribbons (AGNRs) affects their optical properties using a tight-binding model and absorption spectral function.
  • Modifications to the edge states lead to diverse electronic structures, altering the band gap and creating unique excitation peaks in optical-absorption spectra, influenced by the type and periodicity of edge extensions.
  • The research uncovers a specific rule governing the impact of edge defects on electronic and optical properties, highlighting a potential pathway for advancements in nano-optical, plasmonic, and optoelectronic technologies.

Article Abstract

We explore the implementation of specific optical properties of armchair graphene nanoribbons (AGNRs) through edge-defect manipulation. This technique employs the tight-binding model in conjunction with the calculated absorption spectral function. Modification of the edge states gives rise to the diverse electronic structures with striking changes in the band gap and special flat bands at low energy. The optical-absorption spectra exhibit unique excitation peaks, and they strongly depend on the type and period of the edge extension. Remarkably, there exist the unusual transition channels associated with the flat bands for selected edge-modified systems. We discovered the special rule governing how the edge-defect influences the electronic and optical properties in AGNRs. Our theoretical prediction demonstrates an efficient way to manipulate the optical properties of AGNRs. This might be of importance in the search for suitable materials designed to have possible technology applications in nano-optical, plasmonic and optoelectronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707309PMC
http://dx.doi.org/10.3390/nano11123229DOI Listing

Publication Analysis

Top Keywords

optical properties
16
properties armchair
8
armchair graphene
8
graphene nanoribbons
8
flat bands
8
properties agnrs
8
role played
4
played edge-defects
4
optical
4
edge-defects optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!