Gold Carbide: A Predicted Nanotube Candidate from First Principle.

Nanomaterials (Basel)

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.

Published: November 2021

In the present work, density functional theory (DFT) calculations were applied to confirm that the gold carbide previously experimentally synthesized was AuC film. A crucial finding is that these kinds of AuC films are self-folded on the graphite substrate, leading to the formation of a semi-nanotube structure, which significantly diminishes the error between the experimental and simulated lattice constant. The unique characteristic, the spontaneous archlike reconstruction, makes AuC a possible candidate for self-assembled nanotubes. The band structure indicated, in the designed AuC nanotube, a narrow gap semiconductor with a bandgap of 0.14 eV. Both AIMD (at 300 and 450 K) results and phonon spectra showed a rather high stability for the AuC nanotube because a strong chemical bond formed between the Au-5d and C-2p states. The AuC nanotube could become a novel functional material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708319PMC
http://dx.doi.org/10.3390/nano11123182DOI Listing

Publication Analysis

Top Keywords

auc nanotube
12
gold carbide
8
auc
6
carbide predicted
4
nanotube
4
predicted nanotube
4
nanotube candidate
4
candidate principle
4
principle work
4
work density
4

Similar Publications

The recent SARS-CoV-2 pandemic underscores the need for rapid and accurate prediction of clinical thrombotic events. Here, we developed nanoengineered multichannel immunosensors for rapid detection of circulating biomarkers associated with thrombosis, including C-reactive protein (CRP), calprotectin, soluble platelet selectin (sP-selectin), and D-dimer. We fabricated the immunosensors using fiber laser engraving of carbon nanotubes and CO laser cutting of microfluidic channels, along with the electrochemical deposition of gold nanoparticles to conjugate with biomarker-specific aptamers and antibody.

View Article and Find Full Text PDF
Article Synopsis
  • - The proposed strategy for detecting HER2, a key marker in breast cancer, involves a three-dimensional structure called COF that efficiently immobilizes the enzyme horseradish peroxidase (HRP) and uses a new redox mediator, 4-acetamidophenol (APAP), for enhanced electrochemical detection.
  • - The combination of COF's structure and HRP results in better catalytic activity and stability compared to free HRP, allowing for improved target recognition and signal amplification in the detection process.
  • - This advanced electrochemical aptasensor shows exceptional specificity and sensitivity, with a detection limit of 0.418 pg/mL for HER2, outperforming conventional methods and with the ability to differentiate between
View Article and Find Full Text PDF

Metoclopramide is an antiemetic agent prescribed for motion sickness, cancer chemotherapy, and pregnancy. The present work aimed to design a metoclopramide-loaded halloysite nanotubes (HNTs) drug-in-adhesive transdermal drug delivery system. Four formulations F1, F2, and F3 with different ratios of HNTs to metoclopramide and a F4 without HNTs were developed using acrylic adhesive DURO-TAK 387-2510 by the solvent casting method.

View Article and Find Full Text PDF

A combination of analytical ultracentrifugation (AUC) and fluorescence spectroscopy are utilized to orthogonally probe compositions of adsorbed surfactant layers on the surface of (7,5) species single-wall carbon nanotubes (SWCNTs) under conditions known to achieve differential partitioning in aqueous two-phase extraction (ATPE) separations. Fluorescence emission intensity and AUC anhydrous particle density measurements independently probe and can discriminate between adsorbed surfactant layers on a (7,5) nanotube comprised of either of two common nanotube dispersants, the anionic surfactants sodium deoxycholate and sodium dodecyl sulfate. Measurements on dispersions containing mixtures of both surfactants indicate near total direct exchange of the dominant surfactant species adsorbed to the carbon nanotube at a critical concentration ratio consistent with the ratio leading to partitioning change in the ATPE separation.

View Article and Find Full Text PDF

Infections resulting from microorganisms pose an ongoing global public health challenge, necessitating the constant development of novel antimicrobial approaches. Utilizing photocatalytic materials to generate reactive oxygen species (ROS) presents an appealing strategy for combating microbial threats. In alignment with this perspective, sodium titanate nanotubes were prepared by scalable hydrothermal method using TiO and NaOH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!