Hydropower dams are subjected to soft water penetration during their service lives. Concrete deterioration due to calcium leaching will decrease the durability of concrete and affect dam safety. The long-term performance of concrete dams due to calcium leaching should be evaluated and predicted accurately to complete reinforcement work in a timely manner. In this paper, a methodology that combined microscopic tests and numerical analysis to evaluate the long-term performance of dam concrete due to calcium leaching is proposed. The current state of concrete is evaluated by analyzing the components of sediments and seepage water through microscopic and spectroscopic tests, such as X-ray photoelectron spectroscopy, scanning electron microscopy, and inductively coupled plasma mass spectrometry. The long-term degradation of concrete was predicted by utilizing a multi-scale model of calcium leaching, which considered the micro-pore structure of cement hydrates flux with time. The simulated results using this calcium leaching model showed a good agreement with other experiments. Finally, a real case study including field inspection was performed and the long-term durability of dam concrete was predicted through microscopic tests and finite element analysis method. It implies that the proposed method could provide calculation and theoretical basis for the durability analysis of concrete dams due to calcium leaching.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708862 | PMC |
http://dx.doi.org/10.3390/ma14247819 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.
Copper flotation tailings (FTs), resulting from the separation and beneficiation processes of ores, are a significant source of environmental pollution (acid mine drainage, toxic elements leaching, and dust generation). The most common disposal method for this industrial waste is dumping. However, due to their favorable physical and chemical properties-the high content of aluminosilicate minerals (60-90%)-flotation tailings can be effectively treated and reused through geopolymerization technology, thereby adding value to this waste.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Mechanics and Engineering, Liaoning Technical University, 47 Zhonghua Road, 123000, Fuxin, Liaoning, China.
Municipal solid waste incineration fly ash (MSWI FA) contains many harmful substances, such as heavy metals, which pose a great threat to the ecological environment. Its proper disposal is an urgent environmental problem that needs to be addressed. The large number of goaf areas in China's mines provides a new approach for MSWI FA treatment.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou, 310027, Zhejiang, China.
This study proposed a novel closed-wet accelerated carbonation method based on ultrasonic chemistry for treating municipal solid waste incineration fly ash (MSWI FA), assessing various reaction parameters (time, temperature, CO pressure, ultrasonic power, and alkaline additives) on the detoxification and synergistic carbon fixation. The mechanisms of carbon sequestration, heavy metal migration-stabilization, and PCDD/Fs migration-degradation were elucidated. Key findings include the reaction kinetic of MSWI FA ultrasonic carbonation aligning with the surface coverage model (R > 0.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
The heavy metal (HM) pollutants in electrolytic manganese residue (EMR) can easily diffuse through the seepage channel of the dump under the leaching action of rainfall. Particularly, the fracture zone, as one of the widely distributed seepage channels in the manganese residue dump (MRD), poses a greater threat to the ecological environment due to its weak mechanical properties, strong ductility, and numerous fractures. In this study, the microbially induced calcium carbonate precipitation (MICP) method was used for anti-seepage reinforcement of the fracture zone in an MRD to be constructed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Faculty of Materials Science and Ceramics, AGH University of Krakow, A. Mickiewicza 30 Av, 30-059 Kraków, Poland.
This article presents a study on the functional properties and morphology of coatings based on amorphous silicon oxycarbide modified with phosphate ions and comodified with aluminum and boron. The objective of this modification was to enhance the biocompatibility and bioactivity without affecting its protective properties. The comodification was aimed toward stabilization of phosphate in the structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!