Recently, mono- and dinuclear complexes have been in the interest of scientists due to their potential application in optoelectronics. Herein, progressive theoretical investigations starting from mononuclear followed by homo- and heterometallic dinuclear osmium and/or ruthenium complexes with NCN-cyclometalating bridging ligands substituted by one or two kinds of heteroaryl groups (pyrazol-1-yl and 4-(2,2-dimethylpropyloxy)pyrid-2-yl) providing the short/long axial symmetry or asymmetry are presented. Step-by-step information about the particular part that built the mixed-metal complexes is crucial to understanding their behavior and checking the necessity of their eventual studies. Evaluation by using density functional theory (DFT) calculations allowed gaining information about the frontier orbitals, energy gaps, and physical parameters of complexes and their oxidized forms. Through time-dependent density functional theory (TD-DFT), calculations showed the optical properties, with a particular emphasis on the nature of low-energy bands. The presented results are a clear indication for other scientists in the field of chemistry and materials science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709181 | PMC |
http://dx.doi.org/10.3390/ma14247783 | DOI Listing |
ACS Nano
January 2025
Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFMater Horiz
December 2024
North Carolina State University, Department of Materials Science & Engineering, Raleigh, NC 27695, USA.
JACS Au
November 2024
Critical Materials Innovation Hub, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
The lanmodulin (LanM) protein has emerged as an effective means for rare earth element (REE) extraction and separation from complex feedstocks without the use of organic solvents. Whereas the binding of LanM to individual REEs has been well characterized, little is known about the thermodynamics of mixed metal binding complexes (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!