Due to long-term problems related to environmental protection, economic aspects, and waste management in the chemical industry, it is justified to develop renewable polymers as an alternative to synthetic polymers. Two kinds of acrylic bio-renewable components were used for the modification of acrylated epoxidized soybean oil (AESO). The bio-based compositions used as photocurable binders to obtain the photocurable coatings with satisfactory properties and high bio content were then prepared. The kinetic of curing reaction of the oligomers and monomers towards radical photopolymerization and the properties of the cured coatings were fully investigated; the results are discussed in relation with the compounds' structures. Important information about how to design and obtain renewable photocurable coatings with satisfactory properties was provided in this study. In this study, AESO resin was modified with renewable oligomer or (math)acrylate monomer to increase the reactivity and reduce the viscosity of the photoreactive system in order to obtain renewable and viable alternatives to petroleum-based polymeric materials with perfect film-forming properties. It turned out that both photopolymerization rate and hardness of cured coatings were increased significantly with the addition of modifiers; the use of a thiol modifier and change of the photoinitiator concentration allowed to improve the adhesion, hardness, and control of the photo-curing process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708715 | PMC |
http://dx.doi.org/10.3390/ma14247731 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!