In this study, the moving least squares (MLS)-Ritz method, which involves combining the Ritz method with admissible functions established using the MLS approach, was used to predict the vibration frequencies of cracked functionally graded material (FGM) plates under static loading on the basis of the three-dimensional elasticity theory. Sets of crack functions are proposed to enrich a set of polynomial functions for constructing admissible functions that represent displacement and slope discontinuities across a crack and appropriate stress singularity behaviors near a crack front. These crack functions enhance the Ritz method in terms of its ability to identify a crack in a plate. Convergence studies of frequencies and comparisons with published results were conducted to demonstrate the correctness and accuracy of the proposed solutions. The proposed approach was also employed for accurately determining the frequencies of cantilevered and simply supported side-cracked rectangular FGM plates and cantilevered internally cracked skewed rhombic FGM plates under uniaxial normal traction. Moreover, the effects of the volume fractions of the FGM constituents, crack configurations, and traction magnitudes on the vibration frequencies of cracked FGM plates were investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705549PMC
http://dx.doi.org/10.3390/ma14247712DOI Listing

Publication Analysis

Top Keywords

fgm plates
16
functionally graded
8
mls-ritz method
8
ritz method
8
admissible functions
8
vibration frequencies
8
frequencies cracked
8
crack functions
8
crack
6
plates
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!