Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work investigates the effect of the addition of Ru and CeO on the process of gasification of carbon deposits formed on the surface of a nickel catalyst during the mixed methane reforming process. Activity studies of the mixed methane reforming process were carried out on (Ru)-Ni/CeO-AlO catalysts at the temperature of 650-750 °C. The ruthenium-promoted catalyst exhibited the highest activity. Carbonized post-reaction catalyst samples were tested with the TOC technique to investigate the carbonization state of the samples. The bimetallic catalyst had the lowest amount of carbon deposit (1.5%) after reaction at 750 °C. The reactivity of the carbon species was assessed in mixtures of oxygen, hydrogen, carbon dioxide, and water. Regardless of the gasifying agent used, the carbon deposit was removed from the surface of the catalytic system. The overall mechanism of mixed methane reforming over Ru and CeO was shown.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706572 | PMC |
http://dx.doi.org/10.3390/ma14247581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!