Fall armyworm, , entered Thailand in late 2018 and has now spread in several regions, with devastating effects in maize and rice production, which are some of the most important cereals in the world. Since then, farmers have utilized the available chemical insecticides to try to control it, but their efforts have been futile. Instead, they have ended up using extraordinary dosages, hence threatening non-target species and other fauna and flora, as well as being costly. In this regard, research has been ongoing, aiming to come up with eco-friendly solutions for this insect. We surveyed and collected various isolates of native entomopathogenic fungi intending to test their efficacy against fall armyworm. Six isolates of entomopathogenic fungi were obtained and identified to based on morphological characteristics and multi-gene phylogenetic analyses. Thereafter, the six isolates of were used to perform efficacy experiments against fall armyworm. Additionally, the glycosyl transferase-like protein 1 () gene was analyzed. Consequently, all the isolates showed efficacy against with isolate BCMU6 causing up to 91.67% mortality. Further, molecular analysis revealed that all the isolates possess the gene, which contributed to their virulence against the insect. This is the first report of utilizing native entomopathogenic to manage in Thailand, with the revelation of as a factor in inducing virulence and cuticle penetration. This study has provided valuable information on the potential development of as an eco-friendly bioinsecticide for the management of fall armyworm in Thailand.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705808 | PMC |
http://dx.doi.org/10.3390/jof7121073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!