This paper aims to investigate the mechanism by which dark septate endophytes (DSEs) enhance cadmium (Cd) tolerance in there host plants. Maize ( L.) was inoculated with a DSE, , under Cd stress at different concentrations (0, 5, 10, and 20 mg·kg). The results show that, under 20 mg/kg Cd stress, DSE significantly increased maize biomass and plant height, indicating that DSE colonization can be utilized to increase the Cd tolerance of host plants. More Cd was retained in DSE-inoculated roots, especially that fixed in the root cell wall (RCW). The capability of DSE to induce a higher Cd holding capacity in the RCW is caused by modulation of the total sugar and uronic acid of DSE-colonized RCW, mainly the pectin and hemicellulose fractions. The fourier-transform spectroscopy analysis results show that carboxyl, hydroxyl, and acidic groups are involved in Cd retention in the DSE-inoculated RCW. The promotion of the growth of maize and improvement in its tolerance to Cd due to DSEs are related to restriction of the translocation of Cd from roots to shoots; resistance of Cd uptake Cd inside cells; and the increase in RCW-integrated Cd through modulating RCW polysaccharide components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708371PMC
http://dx.doi.org/10.3390/jof7121035DOI Listing

Publication Analysis

Top Keywords

dark septate
8
root cell
8
cell wall
8
tolerance host
8
host plants
8
dse
5
rcw
5
effects dark
4
septate endophyte
4
endophyte dse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!