Zeolite 13X (NaX) was modified through ion-exchange with alkali and alkaline earth metal cations. The degree of ion exchange was thoroughly characterized with ICP, EDS and XRF methods. The new method of EDS data evaluation for zeolites was presented. It delivers the same reliable results as more complicated, expensive, time consuming and hazardous ICP approach. The highest adsorption capacities at 273 K and 0.95 bar were achieved for materials containing the alkali metals in the following order K < Na < Li, respectively, 4.54, 5.55 and 5.94 mmol/g. It was found that it is associated with the porous parameters of the ion-exchanged samples. The LiNaX form of zeolite exhibited the highest specific surface area of 624 m/g and micropore volume of 0.35 cm/g compared to sodium form 569 m/g and 0.30 cm/g, respectively. The increase of CO uptake is not related with deterioration of CO selectivity. At room temperature, the CO vs. N selectivity remains at a very high stable level prior and after ion exchange in co-adsorption process (X during adsorption 0.15; X during desorption 0.95) within measurement uncertainty. Additionally, the LiNaX sample was proven to be stable in the aging adsorption-desorption tests (200 sorption-desorption cycles; circa 11 days of continuous process) exhibiting the CO uptake decrease of about 6%. The exchange with alkaline earth metals (Mg, Ca) led to a significant decrease of SSA and micropore volume which correlated with lower CO adsorption capacities. Interestingly, the divalent cations cause formation of mesopores, due to the relaxation of lattice strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707879 | PMC |
http://dx.doi.org/10.3390/molecules26247520 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
Background/objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Electric Power Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland.
During the heat treatment of round steel bars, a heated charge in the form of a cylindrically formed bundle is placed in a furnace. This type of charge is a porous granular medium in which a complex heat flow occurs during heating. The following heat transfer mechanisms occur simultaneously in this medium: conduction in bars, conduction within the gas, thermal radiation between the surfaces of the bars, and contact conduction across the joints between the adjacent bars.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 94901 Nitra, Slovakia.
Experimental studies have shown that osmosis could be one of the mechanisms of water transport in porous materials that act, to a certain extent, as semipermeable membranes. In this paper, an experimental apparatus and the corresponding model to measure and determine the osmotic efficiency, , of bulk porous materials are described. Both the apparatus and model to interpret water transport in samples are modifications of those of Sherwood and Craster.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
CT-Lab UG (Haftungsbeschränkt), Nobelstr. 15, 70569 Stuttgart, Germany.
Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to describe the behavior of the material, considering its internal structure.
View Article and Find Full Text PDFGels
December 2024
Institute of Natural Sciences and Technosphere Safety, Sakhalin State University, 693000 Yuzhno-Sakhalinsk, Russia.
A new composite material with enhanced sorption-selective properties for uranium recovery from liquid media has been obtained. Sorbents were synthesized through a polycondensation reaction of a mixture of 4-amino-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (hereinafter referred to as amidoxime) and SiO in an environment of organic solvents (acetic acid, dioxane) and highly porous SiO. To establish optimal conditions for forming the polymer sorption-active part and the synthesis as a whole, a series of composite adsorbents were synthesized with varying amidoxime/matrix ratios (35/65, 50/50, 65/35).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!