AI Article Synopsis

  • Consultation prioritization is essential for effective healthcare management, and AI-powered software can enhance this process by enabling remote consultations, especially in rural areas or during pandemics.
  • AI mimics human intelligence using machine learning and neural networks, which helps create precise diagnostic algorithms and tailored treatments in various medical fields like oncology and dermatology.
  • The authors review existing research on the role of AI in diagnosing and treating arterial and venous diseases, noting that while there are promising applications, data on its effectiveness in these areas remain limited.

Article Abstract

Consultation prioritization is fundamental in optimal healthcare management and its performance can be helped by artificial intelligence (AI)-dedicated software and by digital medicine in general. The need for remote consultation has been demonstrated not only in the pandemic-induced lock-down but also in rurality conditions for which access to health centers is constantly limited. The term "AI" indicates the use of a computer to simulate human intellectual behavior with minimal human intervention. AI is based on a "machine learning" process or on an artificial neural network. AI provides accurate diagnostic algorithms and personalized treatments in many fields, including oncology, ophthalmology, traumatology, and dermatology. AI can help vascular specialists in diagnostics of peripheral artery disease, cerebrovascular disease, and deep vein thrombosis by analyzing contrast-enhanced magnetic resonance imaging or ultrasound data and in diagnostics of pulmonary embolism on multi-slice computed angiograms. Automatic methods based on AI may be applied to detect the presence and determine the clinical class of chronic venous disease. Nevertheless, data on using AI in this field are still scarce. In this narrative review, the authors discuss available data on AI implementation in arterial and venous disease diagnostics and care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705683PMC
http://dx.doi.org/10.3390/jpm11121280DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
venous disease
8
intelligence evidence-based
4
evidence-based current
4
current status
4
status potential
4
potential lower
4
lower limb
4
limb vascular
4
vascular management
4

Similar Publications

Psychosocial rehabilitation and psychosocial disability research have been a longstanding topic in healthcare, demanding continuous exploration and analysis to enhance patient and clinical outcomes. As the prevalence of psychosocial disability research continues to attract scholarly attention, many scientific articles are being published in the literature. These publications offer profound insights into diagnostics, preventative measures, treatment strategies, and epidemiological factors.

View Article and Find Full Text PDF

Background: With the widespread application of Artificial Intelligence technology in the field of E-commerce, human-machine relationships have attracted considerable attention within the field of psychology. Address forms, as crucial linguistic cues, have shown notable progress in advancing research on interpersonal relationships; however, a comprehensive understanding of the dynamics in interpersonal (or human-machine) relationships among interactors remains elusive. Therefore, based on Social Identity Theory, this paper explores the interactive effects and underlying mechanisms of affectionate nicknames and streamer type on streamer attitude in E-commerce live streaming, with consumers' perceptions of psychological closeness serving as the mediating mechanism.

View Article and Find Full Text PDF

Conductive hydrogels: intelligent dressings for monitoring and healing chronic wounds.

Regen Biomater

November 2024

Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China.

Conductive hydrogels (CHs) represent a burgeoning class of intelligent wound dressings, providing innovative strategies for chronic wound repair and monitoring. Notably, CHs excel in promoting cell migration and proliferation, exhibit powerful antibacterial and anti-inflammatory properties, and enhance collagen deposition and angiogenesis. These capabilities, combined with real-time monitoring functions, play a pivotal role in accelerating collagen synthesis, angiogenesis and continuous wound surveillance.

View Article and Find Full Text PDF

This study developed an artificial intelligence (AI) system using a local-global multimodal fusion graph neural network (LGMF-GNN) to address the challenge of diagnosing major depressive disorder (MDD), a complex disease influenced by social, psychological, and biological factors. Utilizing functional MRI, structural MRI, and electronic health records, the system offers an objective diagnostic method by integrating individual brain regions and population data. Tested across cohorts from China, Japan, and Russia with 1,182 healthy controls and 1,260 MDD patients from 24 institutions, it achieved a classification accuracy of 78.

View Article and Find Full Text PDF

This article examines the convergence of physics, chemistry, and artificial intelligence (AI), highlighted by recent Nobel Prizes. It traces the historical development of neural networks, emphasizing interdisciplinary research's role in advancing AI. The authors advocate for nurturing AI-enabled polymaths to bridge the gap between theoretical advancements and practical applications, driving progress toward artificial general intelligence (AGI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!