Aims: We tested the hypothesis that artificial intelligence (AI)-powered algorithms applied to cardiac magnetic resonance (CMR) images could be able to detect the potential patterns of cardiac amyloidosis (CA). Readers in CMR centers with a low volume of referrals for the detection of myocardial storage diseases or a low volume of CMRs, in general, may overlook CA. In light of the growing prevalence of the disease and emerging therapeutic options, there is an urgent need to avoid misdiagnoses.

Methods And Results: Using CMR data from 502 patients (CA: = 82), we trained convolutional neural networks (CNNs) to automatically diagnose patients with CA. We compared the diagnostic accuracy of different state-of-the-art deep learning techniques on common CMR imaging protocols in detecting imaging patterns associated with CA. As a result of a 10-fold cross-validated evaluation, the best-performing fine-tuned CNN achieved an average ROC AUC score of 0.96, resulting in a diagnostic accuracy of 94% sensitivity and 90% specificity.

Conclusions: Applying AI to CMR to diagnose CA may set a remarkable milestone in an attempt to establish a fully computational diagnostic path for the diagnosis of CA, in order to support the complex diagnostic work-up requiring a profound knowledge of experts from different disciplines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705947PMC
http://dx.doi.org/10.3390/jpm11121268DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural networks
8
cardiac amyloidosis
8
cardiac magnetic
8
magnetic resonance
8
low volume
8
diagnostic accuracy
8
cmr
5
networks fully
4
fully automated
4

Similar Publications

Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.

View Article and Find Full Text PDF

Intelligent Intrusion Detection System Against Various Attacks Based on a Hybrid Deep Learning Algorithm.

Sensors (Basel)

January 2025

Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.

The Internet of Things (IoT) has emerged as a crucial element in everyday life. The IoT environment is currently facing significant security concerns due to the numerous problems related to its architecture and supporting technology. In order to guarantee the complete security of the IoT, it is important to deal with these challenges.

View Article and Find Full Text PDF

Ground-Target Recognition Method Based on Transfer Learning.

Sensors (Basel)

January 2025

College of Communication Engineering, Jilin University, Changchun 130012, China.

A moving ground-target recognition system can monitor suspicious activities of pedestrians and vehicles in key areas. Currently, most target recognition systems are based on devices such as fiber optics, radar, and vibration sensors. A system based on vibration sensors has the advantages of small size, low power consumption, strong concealment, easy installation, and low power consumption.

View Article and Find Full Text PDF

A Deep Learning Approach for Mental Fatigue State Assessment.

Sensors (Basel)

January 2025

Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China.

This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.

View Article and Find Full Text PDF

Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM.

Sensors (Basel)

January 2025

School of Mechanical and Vehicle Engineering, Changchun University, Changchun 130022, China.

Predicting the Remaining Useful Life (RUL) is vital for ensuring the reliability and safety of equipment and components. This study introduces a novel method for predicting RUL that utilizes the Convolutional Block Attention Module (CBAM) to address the problem that Convolutional Neural Networks (CNNs) do not effectively leverage data channel features and spatial features in residual life prediction. Firstly, Fast Fourier Transform (FFT) is applied to convert the data into the frequency domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!