A person high in neuroticism is more likely to experience anxiety, stress, worry, fear, anger, and depression. Previous studies have shown that the gut microbiota can influence personality and mental disorders, including stress, anxiety, and depression, through the gut-brain axis. Here, we investigated the correlations between the sub-facet of neuroticism and gut microbiota using the Revised NEO Personality Inventory and the 16S rRNA gene sequencing data 784 adults. We found that the high anxiety and vulnerability group showed significantly lower richness in microbial diversity than a group with low anxiety and vulnerability. In beta diversity, there was a significant difference between the low and high groups of anxiety, self-consciousness, impulsiveness, and vulnerability. In taxonomic compositions, Haemophilus belonging to Gammaproteobacteria was correlated with the Neuroticism domain as well as N1 anxiety and N6 vulnerability facets. The high N1 anxiety and N6 vulnerability group was correlated with a low abundance of Christensenellaceae belonging to Firmicutes Clostridia. High N4 self-consciousness was correlated with a low abundance of Alistipes and Sudoligranulum. N5 impulsiveness was correlated with a low abundance of Oscillospirales. Our findings will contribute to uncovering the potential link between the gut microbiota and neuroticism, and the elucidation of the correlations of the microbiome-gut-brain axis with behavioral changes and psychiatric cases in the general population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704006 | PMC |
http://dx.doi.org/10.3390/jpm11121246 | DOI Listing |
ACS Nano
January 2025
Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States.
Gut dysbiosis contributes to multiple pathologies, yet the mechanisms of the gut microbiota-mediated influence on systemic and distant responses remain largely elusive. This study aimed to identify the role of nanosized bacterial extracellular vesicles (bEVs) in mediating allodynia, i.e.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. Electronic address:
Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Vet Products Research & Innovation Center Co., Ltd. 141 Moo9, Thailand Science Park, Innovation Clusters (INC2) Tower D 11(th) floor, Room No. INCD1108-INCD1111 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
Recently, microsporidiosis caused by a microsporidian [Ecytonucleospora (Enterocytozoon) hepatopenaei, EHP] has been found to seriously impact the global shrimp industry. The aim of this study was to evaluate the therapeutic effects of fumaric acid (FA) in EHP-infected Pacific white shrimp (Penaeus vannamei). In the first 2 groups, non-EHP-infected shrimp were fed FA-supplemented (10 g/kg diet) or normal feed (CM+ and CM-, respectively).
View Article and Find Full Text PDFAgeing Res Rev
January 2025
Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, P R China; School of Medicine and Allied Health Sciences, University of The Gambia; Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China. Electronic address:
The trillions of microbial populations residing in the gut have recently shown that they can be used as a remedy for various diseases. The gut microbiota-brain-axis interface is one unique pathway that the microbiota demonstrates its medicinal value. This medicinal value is further seen when there is a decline in gut microbial diversity (dysbiosis).
View Article and Find Full Text PDFCell
January 2025
Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia. Electronic address:
The gut microbiota is a powerful influencer of systemic immunity, with its impact on distal organs like the lungs garnering increasing attention. In this issue of Cell, Burrows et al. report that a gut protozoan plays a key role in shaping the immunological steady state of the lung.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!