Tomato-based processed foods are a key component of modern diets, usually combined with salt and olive oil in different ratios. For the design of radiofrequency (RF) and microwave (MW) heating processes of tomato-based products, it is of importance to know how the content of both ingredients will affect their dielectric properties. Three concentrations of olive oil and salt were studied in a tomato homogenate in triplicate. The dielectric properties were measured from 10 to 3000 MHz and from 10 to 90 °C. Interaction effects were studied using a general linear model. At RF frequencies, the dielectric constant decreased with increasing temperature in samples without added salt, but this tendency was reversed in samples with added salt. The addition of salt and oil increased the frequency at which this reversion occurred. At MW frequencies, the dielectric constant decreased with increasing temperature, salt, and oil content. The loss factor increased with increasing salt content and temperature, except in samples without added salt at 2450 MHz. Penetration depth decreased with increasing frequency and loss factor. Salt and oil contents have a significant effect on the dielectric properties of tomato homogenates and must be considered for the design of dielectric heating processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8701088PMC
http://dx.doi.org/10.3390/foods10123124DOI Listing

Publication Analysis

Top Keywords

dielectric properties
16
decreased increasing
12
samples salt
12
salt oil
12
salt
10
oil salt
8
olive oil
8
heating processes
8
frequencies dielectric
8
dielectric constant
8

Similar Publications

Use of dielectric-barrier discharge (DBD) cold plasma for control of bread spoilage fungi.

Int J Food Microbiol

December 2024

Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil. Electronic address:

Bread is a greatly consumed bakery product worldwide. Unfortunately, it is an optimal substrate for fungal contamination and deterioration (aw > 0.95), commonly caused by the genera Penicillium, Paecilomyces, and Aspergillus, resulting in significant economic losses.

View Article and Find Full Text PDF

The dielectric behavior of Asparagine (CHNO) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine.

View Article and Find Full Text PDF

Wi-Fi signal for soil moisture sensing.

Environ Monit Assess

December 2024

Division of Soil Science, Institute of Geoecology, TU Braunschweig, Brunswick, Germany.

Measuring soil moisture is essential in various scientific and engineering disciplines. Over recent decades, numerous technologies have been employed for in situ monitoring of soil moisture. Currently, dielectric-based sensors are the most popular measurement technology and provide acceptable accuracy for various measurement purposes.

View Article and Find Full Text PDF

Novel functional materials possessing the capability to attenuate electromagnetic energy are being increasingly incorporated into home decor as concerns over excessive electromagnetic radiation pollution continue to grow. The properties of magnetism and dielectricity in the flexible peanut shell/CoFeO/reduced graphene oxide/polyvinyl alcohol (PS/CF/(RGO)/PVA) nanocomposites can be finely tuned by adjusting the amount of RGO in the mixture. An examination of the composite's absorption capabilities revealed a direct link between higher RGO content and enhanced absorption.

View Article and Find Full Text PDF

A comprehensive review of non-invasive optical and microwave biosensors for glucose monitoring.

Biosens Bioelectron

December 2024

Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; Departamento de Engenharia Eletrônica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil. Electronic address:

Frequent glucose monitoring is essential for effective diabetes management. Currently, glucose monitoring is done using invasive methods such as finger-pricking and subcutaneous sensing. However, these methods can cause discomfort, heighten the risk of infection, and some sensing devices need frequent calibration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!