A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergetic Inactivation Mechanism of Protocatechuic Acid and High Hydrostatic Pressure against O157:H7. | LitMetric

Synergetic Inactivation Mechanism of Protocatechuic Acid and High Hydrostatic Pressure against O157:H7.

Foods

College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China.

Published: December 2021

With the wide application of high hydrostatic pressure (HHP) technology in the food industry, safety issues regarding food products, resulting in potential food safety hazards, have arisen. To address such problems, this study explored the synergetic bactericidal effects and mechanisms of protocatechuic acid (PCA) and HHP against O157:H7. At greater than 200 MPa, PCA (1.25 mg/mL for 60 min) plus HHP treatments had significant synergetic bactericidal effects that positively correlated with pressure. After a combined treatment at 500 MPa for 5 min, an approximate 9.0 log CFU/mL colony decline occurred, whereas the individual HHP and PCA treatments caused 4.48 and 1.06 log CFU/mL colony decreases, respectively. Mechanistically, membrane integrity and morphology were damaged, and the permeability increased when O157: H7 was exposed to the synergetic stress of PCA plus HHP. Inside cells, the synergetic treatment additionally targeted the activities of enzymes such as superoxide dismutase, catalase and ATPase, which were inhibited significantly ( ≤ 0.05) when exposed to high pressure. Moreover, an analysis of circular dichroism spectra indicated that the synergetic treatment caused a change in DNA structure, which was expressed as the redshift of the characteristic absorption peak. Thus, the synergetic treatment of PCA plus HHP may be used as a decontamination method owing to the good bactericidal effects on multiple targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8701084PMC
http://dx.doi.org/10.3390/foods10123053DOI Listing

Publication Analysis

Top Keywords

bactericidal effects
12
pca hhp
12
synergetic treatment
12
protocatechuic acid
8
high hydrostatic
8
hydrostatic pressure
8
synergetic bactericidal
8
log cfu/ml
8
cfu/ml colony
8
synergetic
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!