Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To precisely achieve a series of daily finger bending motions, a soft robotic finger corresponding to the anatomical range of each joint was designed in this study with multi-material pneumatic actuators. The actuator as a biomimetic artificial joint was developed on the basis of two composite materials of different shear modules, and the pneumatic bellows as expansion parts was restricted by frame that made from polydimethylsiloxane (PDMS). A simplified mathematical model was used for the bending mechanism description and provides guidance for the multi-material pneumatic actuator fabrication (e.g., stiffness and thickness) and structural design (e.g., cross length and chamber radius), as well as the control parameter optimization (e.g., the air pressure supply). An actuation pressure of over 70 kPa is required by the developed soft robotic finger to provide a full motion range (MCP = 36°, PIP = 114°, and DIP = 75°) for finger action mimicking. In conclusion, a multi-material pneumatic actuator was designed and developed for soft robotic finger application and theoretically and experimentally demonstrated its feasibility in finger action mimicking. This study explored the mechanical properties of the actuator and could provide evidence-based technical parameters for pneumatic robotic finger design and precise control of its dynamic air pressure dosages in mimicking actions. Thereby, the conclusion was supported by the results theoretically and experimentally, which also aligns with our aim to design and develop a multi-material pneumatic actuator as a biomimetic artificial joint for soft robotic finger application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706791 | PMC |
http://dx.doi.org/10.3390/mi12121593 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!