Numerical Simulation of the Photobleaching Process in Laser-Induced Fluorescence Photobleaching Anemometer.

Micromachines (Basel)

State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China.

Published: December 2021

At present, a novel flow diagnostic technique for micro/nanofluidics velocity measurement-laser-induced fluorescence photobleaching anemometer (LIFPA)-has been developed and successfully applied in broad areas, e.g., electrokinetic turbulence in micromixers and AC electroosmotic flow. Nevertheless, in previous investigations, to qualitatively reveal the dynamics of the photobleaching process of LIFPA, an approximation of uniform laser distribution was applied. This is different from the actual condition where the laser power density distribution is normally Gaussian. In this investigation, we numerically studied the photobleaching process of fluorescent dye in the laser focus region, according to the convection-diffusion reaction equation. The profiles of effective dye concentration and fluorescence were elucidated. The relationship between the commonly used photobleaching time constant obtained by experiments and the photochemical reaction coefficient is revealed. With the established model, we further discuss the effective spatial resolution of LIFPA and study the influence of the detection region of fluorescence on the performance of the LIFPA system. It is found that at sufficiently high excitation laser power density, LIFPA can even achieve a super-resolution that breaks the limit of optical diffraction. We hope the current investigation can reveal the photobleaching process of fluorescent dye under high laser power density illumination, to enhance our understanding of fluorescent dynamics and photochemistry and develop more powerful photobleaching-related flow diagnostic techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708141PMC
http://dx.doi.org/10.3390/mi12121592DOI Listing

Publication Analysis

Top Keywords

photobleaching process
16
laser power
12
power density
12
fluorescence photobleaching
8
photobleaching anemometer
8
flow diagnostic
8
process fluorescent
8
fluorescent dye
8
photobleaching
7
laser
5

Similar Publications

The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging.

View Article and Find Full Text PDF

Supervised multi-frame dual-channel denoising enables long-term single-molecule FRET under extremely low photon budget.

Nat Commun

January 2025

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.

Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame.

View Article and Find Full Text PDF

Waveguide evanescent field fluorescence microscopy (WEFF) is an evanescent-based microscopy that utilizes a confined thin film of light, around 100 nm, to image the plasma membrane of cells attached to a waveguide. Low photobleaching and low background besides its high axial resolution allows time-lapse imaging to investigate changes in cell morphology in the presence or absence of chemical agents. Both large field of view (FOV) and uniform illumination are very important while imaging cell-substrate contacts with an evanescent field.

View Article and Find Full Text PDF

Integrin_K Channel_Complexes (IKCs), are implicated in neurodevelopment and cause developmental and epileptic encephalopathy (DEE) through mechanisms that were poorly understood. Here, we investigate the function of neocortical IKCs formed by voltage-gated potassium (Kv) channels Kcnb1 and α5β5 integrin dimers in wild-type (WT) and homozygous knock-in (KI) Kcnb1 mouse model of DEE. Kcnb1 mice suffer from severe cognitive deficit and compulsive behavior.

View Article and Find Full Text PDF

Intermittent fasting (IF) has been shown to ameliorate inflammation including DSS-induced colitis. It is well known that autophagy can limit inflammation and TFEB is a master transcriptional factor that regulates the processes of autophagy. However, whether TFEB is involved in the regulation of IF-mediated amelioration of inflammation and its mechanism remained unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!