Editorial for the Special Issue on Flash Memory Devices.

Micromachines (Basel)

Dipartimento di Ingegneria, Università degli Studi di Ferrara, Via G. Saragat 1, 44122 Ferrara, Italy.

Published: December 2021

Flash memory devices represented a breakthrough in the storage industry since their inception in the mid-1980s, and innovation is still ongoing after more than 35 years [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707656PMC
http://dx.doi.org/10.3390/mi12121566DOI Listing

Publication Analysis

Top Keywords

flash memory
8
memory devices
8
editorial special
4
special issue
4
issue flash
4
devices flash
4
devices represented
4
represented breakthrough
4
breakthrough storage
4
storage industry
4

Similar Publications

For potential application in advanced memory devices such as dynamic random-access memory (DRAM) or NAND flash, nanolaminated indium oxide (In-O) and gallium oxide (Ga-O) films with five different vertical cation distributions were grown and investigated by using a plasma-enhanced atomic layer deposition (PEALD) process. Specifically, this study provides an in-depth examination of how the control of individual layer thicknesses in the nanolaminated (NL) IGO structure impacts not only the physical and chemical properties of the thin film but also the overall device performance. To eliminate the influence of the cation composition ratio and overall thickness on the IGO thin film, these parameters were held constant across all conditions.

View Article and Find Full Text PDF

IMPACT: In-Memory ComPuting Architecture based on Y-FlAsh Technology for Coalesced Tsetlin machine inference.

Philos Trans A Math Phys Eng Sci

January 2025

Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process.

View Article and Find Full Text PDF

Through detailed experimental and modeling activities, this paper investigates the origin of the temperature dependence of the Erase operation in 3D nand flash arrays. First of all, experimental data collected down to the cryogenic regime on both charge-trap and floating-gate arrays are provided to demonstrate that the reduction in temperature makes cells harder to Erase irrespective of the nature of their storage layer. This evidence is then attributed to the weakening, with the decrease in temperature, of the gate-induced drain leakage (GIDL) current exploited to set the electrostatic potential of the body of the nand strings during Erase.

View Article and Find Full Text PDF

Balancing Page Endurance Variation Between Layers to Extend 3D NAND Flash Memory Lifetime.

Micromachines (Basel)

November 2024

School of Computer and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China.

With vertical stacking, 3D NAND's flash memory can achieve continuous capacity growth. However, the endurance variation between the stacked layers becomes more and more significant due to process variation, which will lead to the underutilization of many pages and seriously affect the lifetime of 3D NAND's flash memory. We investigated the endurance variation characteristics between layers and divided the stacked layers into the top, middle, and bottom layers according to the endurance characteristics.

View Article and Find Full Text PDF

Cryogenic sample eject system for electron paramagnetic resonance spectrometers.

J Magn Reson

January 2025

Bridge12 Magnetic Resonance, 11 Michigan Drive, Natick, MA 01760, USA. Electronic address:

We present a fully automated cryogenic sample insertion and ejection system for use with low-temperature EPR probes. We show how the system can be implemented on a conventional EPR spectrometer and that ejection and insertion is reliably possible at temperatures down to 10 K. Furthermore, we investigate the glass properties of a 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!