State-of-the-Art Approaches for Image Deconvolution Problems, including Modern Deep Learning Architectures.

Micromachines (Basel)

Biomedical Photoacoustics Lab, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia.

Published: December 2021

In modern digital microscopy, deconvolution methods are widely used to eliminate a number of image defects and increase resolution. In this review, we have divided these methods into classical, deep learning-based, and optimization-based methods. The review describes the major architectures of neural networks, such as convolutional and generative adversarial networks, autoencoders, various forms of recurrent networks, and the attention mechanism used for the deconvolution problem. Special attention is paid to deep learning as the most powerful and flexible modern approach. The review describes the major architectures of neural networks used for the deconvolution problem. We describe the difficulties in their application, such as the discrepancy between the standard loss functions and the visual content and the heterogeneity of the images. Next, we examine how to deal with this by introducing new loss functions, multiscale learning, and prior knowledge of visual content. In conclusion, a review of promising directions and further development of deconvolution methods in microscopy is given.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707587PMC
http://dx.doi.org/10.3390/mi12121558DOI Listing

Publication Analysis

Top Keywords

deep learning
8
deconvolution methods
8
review describes
8
describes major
8
major architectures
8
architectures neural
8
neural networks
8
deconvolution problem
8
loss functions
8
visual content
8

Similar Publications

Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

View Article and Find Full Text PDF

Background: A comprehensive analysis of the occlusal plane (OP) inclination in predicting anteroposterior mandibular position (APMP) changes is still lacking. This study aimed to analyse the relationships between inclinations of different OPs and APMP metrics and explore the feasibility of OP inclination in predicting changes in APMP.

Methods: Overall, 115 three-dimensional (3D) models were reconstructed using deep learning-based cone-beam computed tomography (CBCT) segmentation, and their accuracy in supporting cusps was compared with that of intraoral scanning models.

View Article and Find Full Text PDF

Background: Natural language processing (NLP) enables the extraction of information embedded within unstructured texts, such as clinical case reports and trial eligibility criteria. By identifying relevant medical concepts, NLP facilitates the generation of structured and actionable data, supporting complex tasks like cohort identification and the analysis of clinical records. To accomplish those tasks, we introduce a deep learning-based and lexicon-based named entity recognition (NER) tool for texts in Spanish.

View Article and Find Full Text PDF

Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction.

BMC Med Imaging

January 2025

Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Problem: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manmade visual details that are complex to generalize across ultrasound images utilizing distinct techniques.

View Article and Find Full Text PDF

Background: Modern reconstruction algorithms for computed tomography (CT) can exhibit nonlinear properties, including non-stationarity of noise and contrast dependence of both noise and spatial resolution. Model observers have been recommended as a tool for the task-based assessment of image quality (Samei E et al., Med Phys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!