A new low-frame-rate active-matrix organic light-emitting diode (AMOLED) pixel circuit with low-temperature poly-Si and oxide (LTPO) thin-film transistors (TFTs) for portable displays with high pixel density is reported. The proposed pixel circuit has the excellent ability to compensate for the threshold voltage variation of the driving TFT (ΔV). By the results of simulation based on a fabricated LTPS TFT and a-IZTO TFT, we found that the error rates of the OLED current were all lower than 2.71% over the range of input data voltages when ΔV = ±0.33 V, and a low frame rate of 1 Hz could be achieved with no flicker phenomenon. Moreover, with only one capacitor and two signal lines in the pixel circuit, a high pixel density and narrow bezel are expected to be realized. We revealed that the proposed 7T1C pixel circuit with low driving voltage and low frame rate is suitable for portable displays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705292 | PMC |
http://dx.doi.org/10.3390/mi12121514 | DOI Listing |
Sensors (Basel)
January 2025
School of Integrated Circuits, Dalian University of Technology, Dalian 116000, China.
The nonlinearity problem of digital pixels restricts the reduction in power consumption at the pixel-level circuit. The main cause of nonlinearity is discussed in this article and low power consumption is attained by reducing the static current in capacitive transimpedance amplifiers (CTIAs) and comparators. Linearity was successfully improved through the use of an off-chip calibration method.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Electronic Engineering, Soongsil University, Seoul, 06938, South Korea.
Recent advances in mass transfer technology are expected to bring next-generation micro light-emitting diodes (µLED) displays into reality, although reliable integration of the active-matrix backplane with the transferred µLEDs remains as a challenge. Here, the µLED display technology is innovated by demonstrating pixel circuit-integrated micro-LEDs (PIMLEDs) and integrating them onto a transparent glass substrate. The PIMLED comprises of low-temperature poly-silicon transistors and GaN µLED.
View Article and Find Full Text PDFACS Nano
December 2024
Interuniversity Microelectronics Center (imec), Leuven 3001, Belgium.
Sensors (Basel)
November 2024
State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institution of Nuclear Technology, Xi'an 710024, China.
Complementary Metal-Oxide-Semiconductor (CMOS) image sensors (CISs), known for their high integration, low cost, and superior performance, have found widespread applications in satellite and space exploration. However, the readout circuits of pixel arrays are vulnerable to functional failures in complex or intense radiation environments, particularly due to transient γ radiation. Using Technology Computer-Aided Design (TCAD) device simulations and Simulation Program with Integrated Circuit Emphasis (SPICE) circuit simulations, combined with a double-exponential current source fault injection method, this study investigates the transient dose rate effect (TDRE) on a typical readout circuit of CISs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!