Mixing Enhancement of Non-Newtonian Shear-Thinning Fluid for a Kenics Micromixer.

Micromachines (Basel)

Department of Industrial and Production Engineering, Jashore University of Science and Technology, Jessore 7408, Bangladesh.

Published: November 2021

In this work, a numerical investigation was analyzed to exhibit the mixing behaviors of non-Newtonian shear-thinning fluids in Kenics micromixers. The numerical analysis was performed using the computational fluid dynamic (CFD) tool to solve 3D Navier-Stokes equations with the species transport equations. The efficiency of mixing is estimated by the calculation of the mixing index for different cases of Reynolds number. The geometry of micro Kenics collected with a series of six helical elements twisted 180° and arranged alternately to achieve the higher level of chaotic mixing, inside a pipe with a Y-inlet. Under a wide range of Reynolds numbers between 0.1 to 500 and the carboxymethyl cellulose (CMC) solutions with power-law indices among 1 to 0.49, the micro-Kenics proves high mixing Performances at low and high Reynolds number. Moreover the pressure losses of the shear-thinning fluids for different Reynolds numbers was validated and represented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708029PMC
http://dx.doi.org/10.3390/mi12121494DOI Listing

Publication Analysis

Top Keywords

non-newtonian shear-thinning
8
shear-thinning fluids
8
reynolds number
8
reynolds numbers
8
mixing
6
mixing enhancement
4
enhancement non-newtonian
4
shear-thinning fluid
4
fluid kenics
4
kenics micromixer
4

Similar Publications

Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.

Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.

View Article and Find Full Text PDF

Influence of Added Cellulose Nanocrystals on the Rheology of Polymers.

Nanomaterials (Basel)

January 2025

Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

The interactions between cellulose nanocrystals and six different polymers (three anionic, two non-ionic, and one cationic) were investigated using rheological measurements of aqueous solutions of nanocrystals and polymers. The experimental viscosity data could be described adequately by a power-law model. The variations in power-law parameters (consistency index and flow behavior index) with concentrations of nanocrystals and polymers were determined for different combinations of nanocrystals and polymers.

View Article and Find Full Text PDF

Introduction: Fluid thickeners used in the management of oropharyngeal dysphagia exhibit non-Newtonian shear-thinning rheology, impacting their viscosity during deglutition. This study investigated how the rheological properties of thickened fluids affect pharyngeal swallowing parameters in patients with oropharyngeal motor disorders diagnosed by pharyngeal high-resolution manometry impedance (P-HRM-I).

Methods: Seventy-two patients (18-89 years) referred for P-HRM-I were diagnostically assessed with a 10 mL thin bolus.

View Article and Find Full Text PDF

3D polycatenated architected materials.

Science

January 2025

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.

Architected materials derive their properties from the geometric arrangement of their internal structural elements. Their designs rely on continuous networks of members to control the global mechanical behavior of the bulk. In this study, we introduce a class of materials that consist of discrete concatenated rings or cage particles interlocked in three-dimensional networks, forming polycatenated architected materials (PAMs).

View Article and Find Full Text PDF

Microwave-assisted extraction of pectin from Dillenia indica (DI) fruit was optimized using Box-Behnken design to maximize yield and quality. Parameters such as solid:solvent (1:10-1:30), microwave power (200-600 W), and extraction time (4-10 min) were varied to determine the optimal conditions. Through experimentation, the optimized extraction parameters were identified as 1:23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!