Endometriosis is one of the most common gynecological and systemic diseases, with a remarkable immune background. Patients suffer from pain and fertility reduction. Due to the distinct immune component, an immunotherapeutic approach may gain importance in the future. In endometriosis, shifts in the cell fractions of the immune system are well known. Moreover, hypoxia concomitant with inflammation causes a disturbed immune response. The removal of endometriosis has a therapeutic effect, normalizes the immune disorders, and remains the most effective causative treatment in terms of pain and infertility. A key issue is whether a similar effect can be achieved for fertility with non-invasive immunotherapy where surgery is inadvisable or cannot be performed for various reasons. Numerous immunotherapy trials, including vaccines, were conducted on animals only, although the research is encouraging. Among the promising methods of non-specific immunotherapy is the administration of an ethiodized oil contrast. Moreover, due to the significant successes of immunotherapy in oncology, the possibility of immunotherapy affecting NK cells has been postulated. NK cells are responsible for the surveillance and apoptosis of ectopic cells. Expanding the arsenal of endometriosis treatment by immunotherapy is promising due to the significant contribution of immunological factors and the limitations of current treatment methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708975 | PMC |
http://dx.doi.org/10.3390/jcm10245879 | DOI Listing |
Sci Rep
December 2024
Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.
The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.
View Article and Find Full Text PDFSci Rep
December 2024
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, Jiangsu, China.
Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China.
To evaluate the predictive utility of N6-methyladenosine (m6A)-associated long non-coding RNAs (lncRNAs) for the prognosis and immunotherapy response in papillary renal cell carcinoma (pRCC). Transcriptomic data of pRCC samples were extracted from the TCGA database. The m6A-related lncRNAs were identified by Pearson correlation analysis.
View Article and Find Full Text PDFSci Rep
December 2024
School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
In recent years, immune checkpoint inhibitors (ICIs) has emerged as a fundamental component of the standard treatment regimen for patients with head and neck squamous cell carcinoma (HNSCC). However, accurately predicting the treatment effectiveness of ICIs for patients at the same TNM stage remains a challenge. In this study, we first combined multi-omics data (mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations) and 10 clustering algorithms, successfully identifying two distinct cancer subtypes (CSs) (CS1 and CS2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!