Heading time is an important agronomic trait affecting the adaptability and productivity of common wheat. In this study, 95 common wheat varieties from Russia and the late-maturing breeding line 'Velut' were tested for allelic diversity of genes having the strongest effect on heading. In this research, allelic variation at the and loci was tested. The and loci provided the largest contribution to genetic diversity. We found two novel allelic variants of the gene in the studied varieties. Ten varieties carried a 160 bp insertion in the promoter region, and the breeding line 'Velut' carried a 1617 bp insertion. These alleles were designated and , respectively. The analysis of the sequences showed the recent insertion of a retrotransposon homologous to the LTR retrotransposon (RLX_Hvul_Dacia_ RND-1) in the allele. Plants with the and the 'Velut' line with the allele headed later than the plants with the wild-type allele; among these plants, 'Velut' is the latest maturing wheat variety. Analysis of the gene expression of two groups of lines differing by the alleles ( or ) from the F population with 'Velut' as a parental line did not reveal a significant difference in the expression level between the groups. Additional research is required to study the reasons for the late maturation of the 'Velut' line. However, the studied wheat varieties could be used as a potential source of natural variation in genes controlling heading times.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699075 | PMC |
http://dx.doi.org/10.3390/biom11121897 | DOI Listing |
Front Plant Sci
January 2025
School of Computer Science and Technology, Henan Institute of Science and Technology, Xinxiang, China.
Introduction: With the advent of technologies such as deep learning in agriculture, a novel approach to classifying wheat seed varieties has emerged. However, some existing deep learning models encounter challenges, including long processing times, high computational demands, and low classification accuracy when analyzing wheat seed images, which can hinder their ability to meet real-time requirements.
Methods: To address these challenges, we propose a lightweight wheat seed classification model called LWheatNet.
Plants (Basel)
January 2025
Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
Functional foods are currently receiving increasing popularity in diet modification. Green bananas contain far more dietary fiber (DF) and resistant starch (RS) than mature bananas. The potential for integrating these vital components into food, such as bread, has expanded.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Whole grain flour is considered a part of a healthy diet, especially when produced with pigmented wheat (). However, the specific metabolic pathways and mechanisms by which these metabolites affect the end-use quality of pigmented wheat varieties still need to be better understood. This study examined the relationship between metabolite concentrations and the end-use quality of three wheat varieties: common wheat (CW, JM20), black wheat (BW, HJ1), and green wheat (GW, HZ148).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China.
Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia.
Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators-MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!