Systemic lupus erythematosus (SLE) is characterized by abnormal action of the immune system and a state of chronic inflammation. The disease can cause life-threatening complications. Neoepitopes arising from interdependent glycation and oxidation processes might be an element of SLE pathology. The groups included in the study were 31 female SLE patients and 26 healthy female volunteers (the control group). Blood serum samples were obtained to evaluate concentrations of advanced glycation end-products (AGEs), carboxymethyllysine (CML), carboxyethyllysine (CEL), pentosidine, and a soluble form of the receptor for advanced glycation end-products (sRAGE). Compared to a healthy control group, the SLE patients exhibited a higher concentration of AGEs and a lower concentration of sRAGE in serum. There were no statistically significant differences in serum CML, CEL, and pentosidine concentrations between the groups. Therefore, SLE patients could be at risk of intensified glycation process and activation of the proinflammatory receptor for advanced glycation end-products (RAGE), which could potentially worsen the disease course; however, it is not clear which compounds contribute to the increased concentration of AGEs in the blood. Additionally, information about the cigarette smoking and alcohol consumption of the study participants was obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700453PMC
http://dx.doi.org/10.3390/cells10123523DOI Listing

Publication Analysis

Top Keywords

advanced glycation
16
glycation end-products
16
sle patients
12
end-products ages
8
systemic lupus
8
lupus erythematosus
8
erythematosus sle
8
control group
8
cel pentosidine
8
receptor advanced
8

Similar Publications

Despite notable advancements in cardiovascular medicine, morbidity and mortality rates associated with myocardial infarction (MI) remain high. The unfavourable prognosis and absence of robust post-MI protocols necessitate further intervention. In this comprehensive review, we will focus on well-established and novel biomarkers that can provide insight into the processes that occur after an ischemic event.

View Article and Find Full Text PDF

Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.

View Article and Find Full Text PDF

The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Glycation and aggregation of proteins have garnered more interest in recent years. Glycation leads to the formation of protein aggregates and advanced glycation ends (AGEs) that play crucial roles within several pathological conditions. The objective of our study is to gain a deeper understanding of the formation of AGEs and aggregates of human serum albumin (HSA) in the presence of methylglyoxal and the protective effects of the phytochemical berberine.

View Article and Find Full Text PDF

Platelet-Rich Plasma in the Treatment of Diabetic Foot Ulcers.

Adv Skin Wound Care

January 2025

At Mayo Clinic, Rochester, Minnesota, United States, Paul T. Gomez, BS, is Summer Research Fellow, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences; Saranya P. Wyles, MD, PhD, is Consultant, Department of Dermatology; and Karen L. Andrews, MD, is Director, Vascular Ulcer and Wound Healing Clinic/Gonda Vascular Center, and Consultant, Department of Physical Medicine and Rehabilitation. At Mayo Clinic, Jacksonville, Florida, Jennifer R. Arthurs is APRN, Center for Regenerative Medicine; and Alison J. Bruce, MB, ChB, is Consultant, Department of Dermatology.

Background: Chronic nonhealing neuropathic foot ulcers affect approximately 15% to 30% of patients with diabetes mellitus and are associated with significant morbidity and mortality. Although current strategies to address these chronic wounds include a multifactorial approach, clinical outcomes remain poor and warrant improvement. Platelet-rich plasma (PRP), derived from autologous or allogeneic blood, is an emerging regenerative product that aims to serve as an adjuvant to standard diabetic foot ulcer (DFU) treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!