Experiments with cell cultures and animal models have provided solid support for the assumption that Nerve Growth Factor (NGF) plays a key role in the regulation of neuronal cell survival and death. Recently, endogenous ligands have been proposed as physiological modulators of NGF biological activity as part of this regulatory cascade. However, the structural and mechanistic determinants for NGF bioactivity remain to be elucidated. We recently unveiled, by an integrated structural biology approach, the ATP binding sites of NGF and investigated the effects on TrkA and p75 receptors binding. These results pinpoint ATP as a genuine endogenous modulator of NGF signaling, paving the way to the characterization of not-yet-identified chemical diverse endogenous biological active small molecules as novel modulators of NGF. The present review aims at providing an overview of the currently available 3D structures of NGF in complex with different small endogenous ligands, featuring the molecular footprints of the small molecules binding. This knowledge is essential for further understanding the functional role of small endogenous ligands in the modulation of neurotrophins signaling in physiological and pathological conditions and for better exploiting the therapeutic potentialities of NGF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700322 | PMC |
http://dx.doi.org/10.3390/cells10123462 | DOI Listing |
Chem Sci
December 2024
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.
The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5.
View Article and Find Full Text PDFEndocrinology
January 2025
Graduate Program in Cellular and Molecular Biology.
SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast two-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China. Electronic address:
Background: Non-alcoholic steatohepatitis (NASH), an advanced manifestation of non-alcoholic fatty liver disease (NAFLD), is characterized by hepatocyte injury, inflammation, and fibrosis. Saturated fatty acids (SFAs) have emerged as key contributors to hepatocyte lipotoxicity and disease progression. Toll-like receptor 4 (TLR4) acts as a sentinel for diverse ligands, including lipopolysaccharide (LPS) and endogenous molecules like palmitic acid (PA)-induced ceramide (CER) accumulation, promoting hepatocyte demise.
View Article and Find Full Text PDFChemMedChem
January 2025
Universitatsspital Basel, Radiopharmazeutische Chemie, Petersgraben 4, 4031, Basel, SWITZERLAND.
The C-X-C chemokine receptor 4 (CXCR4) is highly upregulated in most cancers, making it an ideal target for delivering radiation therapy to tumors. We previously demonstrated the feasibility of targeting CXCR4 in vivo using a radiolabeled derivative of EPI-X4, an endogenous CXCR4 antagonist, named DOTA-K-JM#173. However, this derivative showed undesirable accumulation in the kidneys, which would limit its clinical use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!